Cargando…
Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor
Angiogenesis refers to the formation of new blood vessels, controlled by certain chemicals, which on stimulation repairs damaged cells or form new ones. Other chemicals, called angiogenesis inhibitors, signal the process to stop, having only mild side effects and are non toxic to most healthy cells....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532009/ https://www.ncbi.nlm.nih.gov/pubmed/23275729 http://dx.doi.org/10.6026/97320630081249 |
_version_ | 1782254234627997696 |
---|---|
author | Chatterjee, Subhojyoti Bhattacharjee, Biplab |
author_facet | Chatterjee, Subhojyoti Bhattacharjee, Biplab |
author_sort | Chatterjee, Subhojyoti |
collection | PubMed |
description | Angiogenesis refers to the formation of new blood vessels, controlled by certain chemicals, which on stimulation repairs damaged cells or form new ones. Other chemicals, called angiogenesis inhibitors, signal the process to stop, having only mild side effects and are non toxic to most healthy cells. In our study, attempt was made to find potent anti-angiogenic inhibitor (pazopanib was considered as a reference drug) for vascular endothelial growth factor receptor (VEGFR-1/FLT-1), which served as a molecular target, using natural agents targeting biological processes important in cancer. Hundreds of natural molecules were initially screened based on lipinski's rule of five and the satisfying ones were taken for receptor-ligand interaction study using docking tools like HEX and quantum. Around fifteen molecules were taken as lead molecule and their binding pocket on VEGF was analyzed using SwissPDBviewer and Q-site finder. The investigational drug pazopanib was found to be interacting with leucine 32 and glutamine 30 in terms of hydrogen bond with the distance of 1.86 and 2.49 A0 respectively. Ames test for the molecules was predicted for probability of mutagenicity on molecular systems such as blood, cardiovascular system, gastrointestinal system; kidney, liver and lung were considered for further screening of the molecules. The natural molecules curcumin, epigallocatechin gallate (EGCG), barrigtozenol and finasteride were showing reliable interaction with VEGFR and their pharmacokinetics parameters were comparatively good than the pazopanib. The dietary product curcumin and EGCG can be cancer chemopreventive agents and the natural molecules barringtozenol and finasteride can be effective inhibitors for VEGFR. |
format | Online Article Text |
id | pubmed-3532009 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Biomedical Informatics |
record_format | MEDLINE/PubMed |
spelling | pubmed-35320092012-12-28 Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor Chatterjee, Subhojyoti Bhattacharjee, Biplab Bioinformation Hypothesis Angiogenesis refers to the formation of new blood vessels, controlled by certain chemicals, which on stimulation repairs damaged cells or form new ones. Other chemicals, called angiogenesis inhibitors, signal the process to stop, having only mild side effects and are non toxic to most healthy cells. In our study, attempt was made to find potent anti-angiogenic inhibitor (pazopanib was considered as a reference drug) for vascular endothelial growth factor receptor (VEGFR-1/FLT-1), which served as a molecular target, using natural agents targeting biological processes important in cancer. Hundreds of natural molecules were initially screened based on lipinski's rule of five and the satisfying ones were taken for receptor-ligand interaction study using docking tools like HEX and quantum. Around fifteen molecules were taken as lead molecule and their binding pocket on VEGF was analyzed using SwissPDBviewer and Q-site finder. The investigational drug pazopanib was found to be interacting with leucine 32 and glutamine 30 in terms of hydrogen bond with the distance of 1.86 and 2.49 A0 respectively. Ames test for the molecules was predicted for probability of mutagenicity on molecular systems such as blood, cardiovascular system, gastrointestinal system; kidney, liver and lung were considered for further screening of the molecules. The natural molecules curcumin, epigallocatechin gallate (EGCG), barrigtozenol and finasteride were showing reliable interaction with VEGFR and their pharmacokinetics parameters were comparatively good than the pazopanib. The dietary product curcumin and EGCG can be cancer chemopreventive agents and the natural molecules barringtozenol and finasteride can be effective inhibitors for VEGFR. Biomedical Informatics 2012-12-19 /pmc/articles/PMC3532009/ /pubmed/23275729 http://dx.doi.org/10.6026/97320630081249 Text en © 2012 Biomedical Informatics This is an open-access article, which permits unrestricted use, distribution, and reproduction in any medium, for non-commercial purposes, provided the original author and source are credited. |
spellingShingle | Hypothesis Chatterjee, Subhojyoti Bhattacharjee, Biplab Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title | Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title_full | Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title_fullStr | Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title_full_unstemmed | Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title_short | Use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
title_sort | use of natural molecules as anti-angiogenic inhibitors for vascular endothelial growth factor receptor |
topic | Hypothesis |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532009/ https://www.ncbi.nlm.nih.gov/pubmed/23275729 http://dx.doi.org/10.6026/97320630081249 |
work_keys_str_mv | AT chatterjeesubhojyoti useofnaturalmoleculesasantiangiogenicinhibitorsforvascularendothelialgrowthfactorreceptor AT bhattacharjeebiplab useofnaturalmoleculesasantiangiogenicinhibitorsforvascularendothelialgrowthfactorreceptor |