Cargando…
Stochastic Boolean networks: An efficient approach to modeling gene regulatory networks
BACKGROUND: Various computational models have been of interest due to their use in the modelling of gene regulatory networks (GRNs). As a logical model, probabilistic Boolean networks (PBNs) consider molecular and genetic noise, so the study of PBNs provides significant insights into the understandi...
Autores principales: | Liang, Jinghang, Han, Jie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532238/ https://www.ncbi.nlm.nih.gov/pubmed/22929591 http://dx.doi.org/10.1186/1752-0509-6-113 |
Ejemplares similares
-
Gene perturbation and intervention in context-sensitive stochastic Boolean networks
por: Zhu, Peican, et al.
Publicado: (2014) -
Stochastic simulation of Boolean rxncon models: towards quantitative analysis of large signaling networks
por: Mori, Tomoya, et al.
Publicado: (2015) -
Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
por: Kim, Haseong, et al.
Publicado: (2007) -
Boolean network simulations for life scientists
por: Albert, István, et al.
Publicado: (2008) -
Discovery of Boolean metabolic networks: integer linear programming based approach
por: Qiu, Yushan, et al.
Publicado: (2018)