Cargando…

The dependence of Ni-Fe bioxide composites nanoparticles on the FeCl(2) solution used

BACKGROUND: Ni(2)O(3)- γ-Fe(2)O(3) composite nanoparticles coated with a layer of 2FeCl(3)·5H(2)O can be prepared by co-precipitation and processing in FeCl(2) solution. Using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron...

Descripción completa

Detalles Bibliográficos
Autores principales: Lin, Yueqiang, Li, Jian, Lin, Lihua, Liu, Xiaodong, Chen, Longlong, Fu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532291/
https://www.ncbi.nlm.nih.gov/pubmed/23110795
http://dx.doi.org/10.1186/1752-153X-6-127
Descripción
Sumario:BACKGROUND: Ni(2)O(3)- γ-Fe(2)O(3) composite nanoparticles coated with a layer of 2FeCl(3)·5H(2)O can be prepared by co-precipitation and processing in FeCl(2) solution. Using vibrating sample magnetometer (VSM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) diffraction techniques, the dependence of the preparation on the concentration of the FeCl(2) treatment solution is revealed. RESULTS: The magnetization of the as-prepared products varied non-monotonically as the FeCl(2) concentration increased from 0.020 M to 1.000 M. The Experimental results show that for the composite nanoparticles, the size of the γ-Fe(2)O(3) phase is constant at about 8 nm, the Ni(2)O(3) phase decreased and the 2FeCl(3)·5H(2)O phase increased with increasing concentration of FeCl(2) solution. The magnetization of the as-prepared products mainly results from the γ-Fe(2)O(3) core, and the competition between the reduction of the Ni(2)O(3) phase with the increase of the 2FeCl(3)·5H(2)O phase resulted in the apparent magnetization varying non-monotonically. CONCLUSIONS: When the concentration of FeCl(2) treatment solution did not exceed 0.100 M, the products are spherical nanoparticles of size about 11 nm; their magnetization increased monotonically with increasing the concentration of FeCl(2) solution due to the decreasing proportion of Ni(2)O(3) phase.