Cargando…
Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats
BACKGROUND: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coron...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532341/ https://www.ncbi.nlm.nih.gov/pubmed/23285277 http://dx.doi.org/10.1371/journal.pone.0053318 |
_version_ | 1782254293057798144 |
---|---|
author | Delbin, Maria A. Davel, Ana Paula C. Couto, Gisele Kruger de Araújo, Gustavo G. Rossoni, Luciana Venturini Antunes, Edson Zanesco, Angelina |
author_facet | Delbin, Maria A. Davel, Ana Paula C. Couto, Gisele Kruger de Araújo, Gustavo G. Rossoni, Luciana Venturini Antunes, Edson Zanesco, Angelina |
author_sort | Delbin, Maria A. |
collection | PubMed |
description | BACKGROUND: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NO(x) (−)), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N(ε)-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NO(x) (−) levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NO(x) (−) levels were partially restored. CONCLUSION: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery. |
format | Online Article Text |
id | pubmed-3532341 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35323412013-01-02 Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats Delbin, Maria A. Davel, Ana Paula C. Couto, Gisele Kruger de Araújo, Gustavo G. Rossoni, Luciana Venturini Antunes, Edson Zanesco, Angelina PLoS One Research Article BACKGROUND: The majority of studies have investigated the effect of exercise training (TR) on vascular responses in diabetic animals (DB), but none evaluated nitric oxide (NO) and advanced glycation end products (AGEs) formation associated with oxidant and antioxidant activities in femoral and coronary arteries from trained diabetic rats. Our hypothesis was that 8-week TR would alter AGEs levels in type 1 diabetic rats ameliorating vascular responsiveness. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats were divided into control sedentary (C/SD), sedentary diabetic (SD/DB), and trained diabetic (TR/DB). DB was induced by streptozotocin (i.p.: 60 mg/kg). TR was performed for 60 min per day, 5 days/week, during 8 weeks. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PHE) and tromboxane analog (U46619) were obtained. The protein expressions of eNOS, receptor for AGEs (RAGE), Cu/Zn-SOD and Mn-SOD were analyzed. Tissues NO production and reactive oxygen species (ROS) generation were evaluated. Plasma nitrate/nitrite (NO(x) (−)), superoxide dismutase (SOD), catalase (CAT), thiobarbituric acid reactive substances (TBARS) and N(ε)-(carboxymethyl) lysine (CML, AGE biomarker). A rightward shift in the concentration-response curves to ACh was observed in femoral and coronary arteries from SD/DB that was accompanied by an increase in TBARS and CML levels. Decreased in the eNOS expression, tissues NO production and NO(x) (−) levels were associated with increased ROS generation. A positive interaction between the beneficial effect of TR on the relaxing responses to ACh and the reduction in TBARS and CML levels were observed without changing in antioxidant activities. The eNOS protein expression, tissues NO production and ROS generation were fully re-established in TR/DB, but plasma NO(x) (−) levels were partially restored. CONCLUSION: Shear stress induced by TR fully restores the eNOS/NO pathway in both preparations from non-treated diabetic rats, however, a massive production of AGEs still affecting relaxing responses possibly involving other endothelium-dependent vasodilator agents, mainly in coronary artery. Public Library of Science 2012-12-28 /pmc/articles/PMC3532341/ /pubmed/23285277 http://dx.doi.org/10.1371/journal.pone.0053318 Text en © 2012 Delbin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Delbin, Maria A. Davel, Ana Paula C. Couto, Gisele Kruger de Araújo, Gustavo G. Rossoni, Luciana Venturini Antunes, Edson Zanesco, Angelina Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title | Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title_full | Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title_fullStr | Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title_full_unstemmed | Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title_short | Interaction between Advanced Glycation End Products Formation and Vascular Responses in Femoral and Coronary Arteries from Exercised Diabetic Rats |
title_sort | interaction between advanced glycation end products formation and vascular responses in femoral and coronary arteries from exercised diabetic rats |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3532341/ https://www.ncbi.nlm.nih.gov/pubmed/23285277 http://dx.doi.org/10.1371/journal.pone.0053318 |
work_keys_str_mv | AT delbinmariaa interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT davelanapaulac interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT coutogiselekruger interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT dearaujogustavog interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT rossonilucianaventurini interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT antunesedson interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats AT zanescoangelina interactionbetweenadvancedglycationendproductsformationandvascularresponsesinfemoralandcoronaryarteriesfromexerciseddiabeticrats |