Cargando…

Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation

BACKGROUND: Transmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood–brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by ch...

Descripción completa

Detalles Bibliográficos
Autores principales: Sagar, Divya, Lamontagne, Anne, Foss, Catherine A, Khan, Zafar K, Pomper, Martin G, Jain, Pooja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533869/
https://www.ncbi.nlm.nih.gov/pubmed/23102113
http://dx.doi.org/10.1186/1742-2094-9-245
_version_ 1782254471797014528
author Sagar, Divya
Lamontagne, Anne
Foss, Catherine A
Khan, Zafar K
Pomper, Martin G
Jain, Pooja
author_facet Sagar, Divya
Lamontagne, Anne
Foss, Catherine A
Khan, Zafar K
Pomper, Martin G
Jain, Pooja
author_sort Sagar, Divya
collection PubMed
description BACKGROUND: Transmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood–brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2) is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by injection of MOG(35–55) peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c(+)-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4(+) and CD8(+) T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. RESULTS: Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. CONCLUSION: CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB, which is facilitated by ERK activation. Overall, these comprehensive studies provide a state-of-the-art view of DCs within the CNS, elucidate their path across the BBB, and highlight potential mechanisms involved in CCL2-mediated DC trafficking.
format Online
Article
Text
id pubmed-3533869
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35338692013-01-07 Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation Sagar, Divya Lamontagne, Anne Foss, Catherine A Khan, Zafar K Pomper, Martin G Jain, Pooja J Neuroinflammation Research BACKGROUND: Transmigration of circulating dendritic cells (DCs) into the central nervous system (CNS) across the blood–brain barrier (BBB) has not thus far been investigated. An increase in immune cell infiltration across the BBB, uncontrolled activation and antigen presentation are influenced by chemokines. Chemokine ligand 2 (CCL2) is a potent chemoattractant known to be secreted by the BBB but has not been implicated in the recruitment of DCs specifically at the BBB. METHODS: Experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice by injection of MOG(35–55) peptide and pertussis toxin intraperitoneally. Animals with increasing degree of EAE score were sacrificed and subjected to near-infrared and fluorescence imaging analysis to detect and localize the accumulation of CD11c(+)-labeled DCs with respect to CCL2 expression. To further characterize the direct effect of CCL2 in DC trafficking at the BBB, we utilized an in vitro BBB model consisting of human brain microvascular endothelial cells to compare migratory patterns of monocyte-derived dendritic cells, CD4(+) and CD8(+) T cells. Further, this model was used to image transmigration using fluorescence microcopy and to assess specific molecular signaling pathways involved in transmigration. RESULTS: Near-infrared imaging of DC transmigration correlated with the severity of inflammation during EAE. Ex vivo histology confirmed the presence of CCL2 in EAE lesions, with DCs emerging from perivascular spaces. DCs exhibited more efficient transmigration than T cells in BBB model studies. These observations correlated with transwell imaging, which indicated a paracellular versus transcellular pattern of migration by DCs and T cells. Moreover, at the molecular level, CCL2 seems to facilitate DC transmigration in an ERK1/2-dependent manner. CONCLUSION: CNS recruitment of DCs correlates with disease severity in EAE via CCL2 chemotaxis and paracellular transmigration across the BBB, which is facilitated by ERK activation. Overall, these comprehensive studies provide a state-of-the-art view of DCs within the CNS, elucidate their path across the BBB, and highlight potential mechanisms involved in CCL2-mediated DC trafficking. BioMed Central 2012-10-26 /pmc/articles/PMC3533869/ /pubmed/23102113 http://dx.doi.org/10.1186/1742-2094-9-245 Text en Copyright ©2012 Sagar et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Sagar, Divya
Lamontagne, Anne
Foss, Catherine A
Khan, Zafar K
Pomper, Martin G
Jain, Pooja
Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title_full Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title_fullStr Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title_full_unstemmed Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title_short Dendritic cell CNS recruitment correlates with disease severity in EAE via CCL2 chemotaxis at the blood–brain barrier through paracellular transmigration and ERK activation
title_sort dendritic cell cns recruitment correlates with disease severity in eae via ccl2 chemotaxis at the blood–brain barrier through paracellular transmigration and erk activation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533869/
https://www.ncbi.nlm.nih.gov/pubmed/23102113
http://dx.doi.org/10.1186/1742-2094-9-245
work_keys_str_mv AT sagardivya dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation
AT lamontagneanne dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation
AT fosscatherinea dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation
AT khanzafark dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation
AT pompermarting dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation
AT jainpooja dendriticcellcnsrecruitmentcorrelateswithdiseaseseverityineaeviaccl2chemotaxisatthebloodbrainbarrierthroughparacellulartransmigrationanderkactivation