Cargando…

Genomic profiling of rectal adenoma and carcinoma by array-based comparative genomic hybridization

BACKGROUND: Rectal cancer is one of the most common cancers in the world. Early detection and early therapy are important for the control of death caused by rectal cancer. The present study aims to investigate the genomic alterations in rectal adenoma and carcinoma. METHODS: We detected the genomic...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Zhi-Zhou, Zhang, Yue-Ming, Shang, Li, Hao, Jia-Jie, Zhang, Tong-Tong, Wang, Bo-Shi, Liang, Jian-Wei, Chen, Xi, Zhang, Ying, Wang, Gui-Qi, Wang, Ming-Rong, Zhang, Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533962/
https://www.ncbi.nlm.nih.gov/pubmed/23158542
http://dx.doi.org/10.1186/1755-8794-5-52
Descripción
Sumario:BACKGROUND: Rectal cancer is one of the most common cancers in the world. Early detection and early therapy are important for the control of death caused by rectal cancer. The present study aims to investigate the genomic alterations in rectal adenoma and carcinoma. METHODS: We detected the genomic changes of 8 rectal adenomas and 8 carcinomas using array CGH. Then 14 genes were selected for analyzing the expression between rectal tumor and paracancerous normal tissues as well as from adenoma to carcinoma by real-time PCR. The expression of GPNMB and DIS3 were further investigated in rectal adenoma and carcinoma tissues by immunohistochemistry. RESULTS: We indentified ten gains and 22 losses in rectal adenoma, and found 25 gains and 14 losses in carcinoma. Gains of 7p21.3-p15.3, 7q22.3-q32.1, 13q13.1-q14.11, 13q21.1-q32.1, 13q32.2-q34, 20p11.21 and 20q11.23-q12 and losses of 17p13.1-p11.2, 18p11.32-p11.21 and 18q11.1-q11.2 were shared by both rectal adenoma and carcinoma. Gains of 1q, 6p21.33-p21.31 and losses of 10p14-p11.21, 14q12-q21.1, 14q22.1-q24.3, 14q31.3-q32.1, 14q32.2-q32.32, 15q15.1-q21.1, 15q22.31 and 15q25.1-q25.2 were only detected in carcinoma but not in adenoma. Copy number and mRNA expression of EFNA1 increased from rectal adenoma to carcinoma. C13orf27 and PMEPA1 with increased copy number in both adenoma and carcinoma were over expressed in rectal cancer tissues. Protein and mRNA expression of GPNMB was significantly higher in cancer tissues than rectal adenoma tissues. CONCLUSION: Our data may help to identify the driving genes involved in the adenoma-carcinoma progression.