Cargando…

Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature

BACKGROUND: The genus Flavivirus currently consists of approximately 80 single-strand positive-sense RNA viruses. These replicate in a range of hosts including myriad vertebrate, insect, and tick species. As a consequence of this broad host range, the majority of flaviviruses can be propagated in mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Aliota, Matthew T, Kramer, Laura D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534007/
https://www.ncbi.nlm.nih.gov/pubmed/23241081
http://dx.doi.org/10.1186/1756-3305-5-293
_version_ 1782254505412263936
author Aliota, Matthew T
Kramer, Laura D
author_facet Aliota, Matthew T
Kramer, Laura D
author_sort Aliota, Matthew T
collection PubMed
description BACKGROUND: The genus Flavivirus currently consists of approximately 80 single-strand positive-sense RNA viruses. These replicate in a range of hosts including myriad vertebrate, insect, and tick species. As a consequence of this broad host range, the majority of flaviviruses can be propagated in most vertebrate and insect cell cultures. This ability to infect arthropods and vertebrates usually is essential for maintenance of these viruses in nature. But recently, there has been the discovery of a number of flaviviruses that infect mosquitoes but not vertebrates. It remains largely unknown why certain flaviviruses infect vertebrates and mosquitoes while others infect mosquitoes or vertebrates exclusively. METHODS: Here, we initiated in vitro host range studies of Rabensburg virus (RABV), an intermediate between the mosquito-specific and horizontally transmitted flaviviruses, to provide information on the factor(s) that underlie the varying host range of flaviviruses. RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses because it does not infect mammalian or avian cell cultures, house sparrows, or chickens, but it does share genetic characteristics with the Japanese Encephalitis serogroup of flaviviruses. RESULTS: In vitro growth kinetic assays revealed the complete abrogation of RABV growth on Vero and E6 cells incubated at temperatures 35°C and higher, but surprisingly RABV infected, replicated efficiently, and displayed overt cytopathic effects (CPE) on Vero and E6 cell cultures incubated below 35°C. In contrast, RABV was fully viable, replicated efficiently, and displayed overt CPE on C6/36 cells incubated at 28°C or 37°C, thus implicating temperature as an important factor limiting the host range of RABV. CONCLUSIONS: These data are critical for further study to more fully identify the determinants that mediate the evolution of biological transmission among flaviviruses. It also will be useful for studies that look to provide a comprehensive molecular definition of flavivirus-host cell interactions. And it will provide a cadre of information to design wet lab experiments to investigate the genetic changes that facilitate host switching, which may lead to new vertebrate pathogens or transmission pathways.
format Online
Article
Text
id pubmed-3534007
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35340072013-01-07 Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature Aliota, Matthew T Kramer, Laura D Parasit Vectors Research BACKGROUND: The genus Flavivirus currently consists of approximately 80 single-strand positive-sense RNA viruses. These replicate in a range of hosts including myriad vertebrate, insect, and tick species. As a consequence of this broad host range, the majority of flaviviruses can be propagated in most vertebrate and insect cell cultures. This ability to infect arthropods and vertebrates usually is essential for maintenance of these viruses in nature. But recently, there has been the discovery of a number of flaviviruses that infect mosquitoes but not vertebrates. It remains largely unknown why certain flaviviruses infect vertebrates and mosquitoes while others infect mosquitoes or vertebrates exclusively. METHODS: Here, we initiated in vitro host range studies of Rabensburg virus (RABV), an intermediate between the mosquito-specific and horizontally transmitted flaviviruses, to provide information on the factor(s) that underlie the varying host range of flaviviruses. RABV is an intermediate between the mosquito-specific and horizontally transmitted flaviviruses because it does not infect mammalian or avian cell cultures, house sparrows, or chickens, but it does share genetic characteristics with the Japanese Encephalitis serogroup of flaviviruses. RESULTS: In vitro growth kinetic assays revealed the complete abrogation of RABV growth on Vero and E6 cells incubated at temperatures 35°C and higher, but surprisingly RABV infected, replicated efficiently, and displayed overt cytopathic effects (CPE) on Vero and E6 cell cultures incubated below 35°C. In contrast, RABV was fully viable, replicated efficiently, and displayed overt CPE on C6/36 cells incubated at 28°C or 37°C, thus implicating temperature as an important factor limiting the host range of RABV. CONCLUSIONS: These data are critical for further study to more fully identify the determinants that mediate the evolution of biological transmission among flaviviruses. It also will be useful for studies that look to provide a comprehensive molecular definition of flavivirus-host cell interactions. And it will provide a cadre of information to design wet lab experiments to investigate the genetic changes that facilitate host switching, which may lead to new vertebrate pathogens or transmission pathways. BioMed Central 2012-12-14 /pmc/articles/PMC3534007/ /pubmed/23241081 http://dx.doi.org/10.1186/1756-3305-5-293 Text en Copyright ©2012 Aliota and Kramer; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Aliota, Matthew T
Kramer, Laura D
Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title_full Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title_fullStr Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title_full_unstemmed Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title_short Replication of West Nile virus, Rabensburg lineage in mammalian cells is restricted by temperature
title_sort replication of west nile virus, rabensburg lineage in mammalian cells is restricted by temperature
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534007/
https://www.ncbi.nlm.nih.gov/pubmed/23241081
http://dx.doi.org/10.1186/1756-3305-5-293
work_keys_str_mv AT aliotamatthewt replicationofwestnilevirusrabensburglineageinmammaliancellsisrestrictedbytemperature
AT kramerlaurad replicationofwestnilevirusrabensburglineageinmammaliancellsisrestrictedbytemperature