Cargando…
Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes
Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be consider...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534076/ https://www.ncbi.nlm.nih.gov/pubmed/23300522 http://dx.doi.org/10.1371/journal.pone.0050186 |
_version_ | 1782475266292973568 |
---|---|
author | Isin, Basak Estiu, Guillermina Wiest, Olaf Oltvai, Zoltán N. |
author_facet | Isin, Basak Estiu, Guillermina Wiest, Olaf Oltvai, Zoltán N. |
author_sort | Isin, Basak |
collection | PubMed |
description | Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β(2)-adrenergic receptor (β(2)AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β(2)AR. We show that the select ligands bind preferentially to different predicted conformers of β(2)AR, and identify a role of β(2)AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as “computational probes” to systematically identify protein conformers with likely biological significance. |
format | Online Article Text |
id | pubmed-3534076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35340762013-01-08 Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes Isin, Basak Estiu, Guillermina Wiest, Olaf Oltvai, Zoltán N. PLoS One Research Article Recently available G-protein coupled receptor (GPCR) structures and biophysical studies suggest that the difference between the effects of various agonists and antagonists cannot be explained by single structures alone, but rather that the conformational ensembles of the proteins need to be considered. Here we use an elastic network model-guided molecular dynamics simulation protocol to generate an ensemble of conformers of a prototypical GPCR, β(2)-adrenergic receptor (β(2)AR). The resulting conformers are clustered into groups based on the conformations of the ligand binding site, and distinct conformers from each group are assessed for their binding to known agonists of β(2)AR. We show that the select ligands bind preferentially to different predicted conformers of β(2)AR, and identify a role of β(2)AR extracellular region as an allosteric binding site for larger drugs such as salmeterol. Thus, drugs and ligands can be used as “computational probes” to systematically identify protein conformers with likely biological significance. Public Library of Science 2012-12-31 /pmc/articles/PMC3534076/ /pubmed/23300522 http://dx.doi.org/10.1371/journal.pone.0050186 Text en © 2012 Isin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Isin, Basak Estiu, Guillermina Wiest, Olaf Oltvai, Zoltán N. Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title | Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title_full | Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title_fullStr | Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title_full_unstemmed | Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title_short | Identifying Ligand Binding Conformations of the β2-Adrenergic Receptor by Using Its Agonists as Computational Probes |
title_sort | identifying ligand binding conformations of the β2-adrenergic receptor by using its agonists as computational probes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534076/ https://www.ncbi.nlm.nih.gov/pubmed/23300522 http://dx.doi.org/10.1371/journal.pone.0050186 |
work_keys_str_mv | AT isinbasak identifyingligandbindingconformationsoftheb2adrenergicreceptorbyusingitsagonistsascomputationalprobes AT estiuguillermina identifyingligandbindingconformationsoftheb2adrenergicreceptorbyusingitsagonistsascomputationalprobes AT wiestolaf identifyingligandbindingconformationsoftheb2adrenergicreceptorbyusingitsagonistsascomputationalprobes AT oltvaizoltann identifyingligandbindingconformationsoftheb2adrenergicreceptorbyusingitsagonistsascomputationalprobes |