Cargando…
A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data
BACKGROUND: Dengue is the most common arboviral disease of humans, with more than one third of the world’s population at risk. Accurate prediction of dengue outbreaks may lead to public health interventions that mitigate the effect of the disease. Predicting infectious disease outbreaks is a challen...
Autores principales: | Buczak, Anna L, Koshute, Phillip T, Babin, Steven M, Feighner, Brian H, Lewis, Sheryl H |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534444/ https://www.ncbi.nlm.nih.gov/pubmed/23126401 http://dx.doi.org/10.1186/1472-6947-12-124 |
Ejemplares similares
-
Prediction of High Incidence of Dengue in the Philippines
por: Buczak, Anna L., et al.
Publicado: (2014) -
Data-driven approach for creating synthetic electronic medical records
por: Buczak, Anna L, et al.
Publicado: (2010) -
An assessment of remotely sensed environmental variables on Dengue epidemiology in Central India
por: Sarma, Devojit Kumar, et al.
Publicado: (2022) -
Ensemble method for dengue prediction
por: Buczak, Anna L., et al.
Publicado: (2018) -
Classification methods for remotely sensed data /
por: Tso, Brandt
Publicado: (2009)