Cargando…

Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm

BACKGROUND: Electrical Impedance Tomography (EIT) is used as a fast clinical imaging technique for monitoring the health of the human organs such as lungs, heart, brain and breast. Each practical EIT reconstruction algorithm should be efficient enough in terms of convergence rate, and accuracy. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Abbasi, Mahdi, Naghsh-Nilchi, Ahmad-Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534592/
https://www.ncbi.nlm.nih.gov/pubmed/22715969
http://dx.doi.org/10.1186/1475-925X-11-34
_version_ 1782475362288009216
author Abbasi, Mahdi
Naghsh-Nilchi, Ahmad-Reza
author_facet Abbasi, Mahdi
Naghsh-Nilchi, Ahmad-Reza
author_sort Abbasi, Mahdi
collection PubMed
description BACKGROUND: Electrical Impedance Tomography (EIT) is used as a fast clinical imaging technique for monitoring the health of the human organs such as lungs, heart, brain and breast. Each practical EIT reconstruction algorithm should be efficient enough in terms of convergence rate, and accuracy. The main objective of this study is to investigate the feasibility of precise empirical conductivity imaging using a sinc-convolution algorithm in D-bar framework. METHODS: At the first step, synthetic and experimental data were used to compute an intermediate object named scattering transform. Next, this object was used in a two-dimensional integral equation which was precisely and rapidly solved via sinc-convolution algorithm to find the square root of the conductivity for each pixel of image. For the purpose of comparison, multigrid and NOSER algorithms were implemented under a similar setting. Quality of reconstructions of synthetic models was tested against GREIT approved quality measures. To validate the simulation results, reconstructions of a phantom chest and a human lung were used. RESULTS: Evaluation of synthetic reconstructions shows that the quality of sinc-convolution reconstructions is considerably better than that of each of its competitors in terms of amplitude response, position error, ringing, resolution and shape-deformation. In addition, the results confirm near-exponential and linear convergence rates for sinc-convolution and multigrid, respectively. Moreover, the least degree of relative errors and the most degree of truth were found in sinc-convolution reconstructions from experimental phantom data. Reconstructions of clinical lung data show that the related physiological effect is well recovered by sinc-convolution algorithm. CONCLUSIONS: Parametric evaluation demonstrates the efficiency of sinc-convolution to reconstruct accurate conductivity images from experimental data. Excellent results in phantom and clinical reconstructions using sinc-convolution support parametric assessment results and suggest the sinc-convolution to be used for precise clinical EIT applications.
format Online
Article
Text
id pubmed-3534592
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35345922013-01-03 Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm Abbasi, Mahdi Naghsh-Nilchi, Ahmad-Reza Biomed Eng Online Research BACKGROUND: Electrical Impedance Tomography (EIT) is used as a fast clinical imaging technique for monitoring the health of the human organs such as lungs, heart, brain and breast. Each practical EIT reconstruction algorithm should be efficient enough in terms of convergence rate, and accuracy. The main objective of this study is to investigate the feasibility of precise empirical conductivity imaging using a sinc-convolution algorithm in D-bar framework. METHODS: At the first step, synthetic and experimental data were used to compute an intermediate object named scattering transform. Next, this object was used in a two-dimensional integral equation which was precisely and rapidly solved via sinc-convolution algorithm to find the square root of the conductivity for each pixel of image. For the purpose of comparison, multigrid and NOSER algorithms were implemented under a similar setting. Quality of reconstructions of synthetic models was tested against GREIT approved quality measures. To validate the simulation results, reconstructions of a phantom chest and a human lung were used. RESULTS: Evaluation of synthetic reconstructions shows that the quality of sinc-convolution reconstructions is considerably better than that of each of its competitors in terms of amplitude response, position error, ringing, resolution and shape-deformation. In addition, the results confirm near-exponential and linear convergence rates for sinc-convolution and multigrid, respectively. Moreover, the least degree of relative errors and the most degree of truth were found in sinc-convolution reconstructions from experimental phantom data. Reconstructions of clinical lung data show that the related physiological effect is well recovered by sinc-convolution algorithm. CONCLUSIONS: Parametric evaluation demonstrates the efficiency of sinc-convolution to reconstruct accurate conductivity images from experimental data. Excellent results in phantom and clinical reconstructions using sinc-convolution support parametric assessment results and suggest the sinc-convolution to be used for precise clinical EIT applications. BioMed Central 2012-06-20 /pmc/articles/PMC3534592/ /pubmed/22715969 http://dx.doi.org/10.1186/1475-925X-11-34 Text en Copyright ©2012 Abbasi and Naghsh-Nilchi; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Abbasi, Mahdi
Naghsh-Nilchi, Ahmad-Reza
Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title_full Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title_fullStr Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title_full_unstemmed Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title_short Precise two-dimensional D-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
title_sort precise two-dimensional d-bar reconstructions of human chest and phantom tank via sinc-convolution algorithm
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534592/
https://www.ncbi.nlm.nih.gov/pubmed/22715969
http://dx.doi.org/10.1186/1475-925X-11-34
work_keys_str_mv AT abbasimahdi precisetwodimensionaldbarreconstructionsofhumanchestandphantomtankviasincconvolutionalgorithm
AT naghshnilchiahmadreza precisetwodimensionaldbarreconstructionsofhumanchestandphantomtankviasincconvolutionalgorithm