Cargando…
Learning and Long-Term Retention of Large-Scale Artificial Languages
Recovering discrete words from continuous speech is one of the first challenges facing language learners. Infants and adults can make use of the statistical structure of utterances to learn the forms of words from unsegmented input, suggesting that this ability may be useful for bootstrapping langua...
Autores principales: | Frank, Michael C., Tenenbaum, Joshua B., Gibson, Edward |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534673/ https://www.ncbi.nlm.nih.gov/pubmed/23300975 http://dx.doi.org/10.1371/journal.pone.0052500 |
Ejemplares similares
-
Correction: Learning and Long-Term Retention of Large-Scale Artificial Languages
por: Frank, Michael C., et al.
Publicado: (2013) -
Input Complexity Affects Long-Term Retention of Statistically Learned Regularities in an Artificial Language Learning Task
por: Jost, Ethan, et al.
Publicado: (2019) -
Learning and Overnight Retention in Declarative Memory in Specific Language Impairment
por: Lukács, Ágnes, et al.
Publicado: (2017) -
Artificial intelligence, large language models, and you
por: Marquardt, Charles
Publicado: (2023) -
Drift as a Driver of Language Change: An Artificial Language Experiment
por: Ventura, Rafael, et al.
Publicado: (2022)