Cargando…
Tissue transglutaminase: a new target to reverse cancer drug resistance
Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Vienna
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535412/ https://www.ncbi.nlm.nih.gov/pubmed/22130737 http://dx.doi.org/10.1007/s00726-011-1167-9 |
_version_ | 1782254690810986496 |
---|---|
author | Budillon, Alfredo Carbone, Carmine Di Gennaro, Elena |
author_facet | Budillon, Alfredo Carbone, Carmine Di Gennaro, Elena |
author_sort | Budillon, Alfredo |
collection | PubMed |
description | Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients. |
format | Online Article Text |
id | pubmed-3535412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Springer Vienna |
record_format | MEDLINE/PubMed |
spelling | pubmed-35354122013-01-04 Tissue transglutaminase: a new target to reverse cancer drug resistance Budillon, Alfredo Carbone, Carmine Di Gennaro, Elena Amino Acids Invited Review Cancer resistance mechanisms, which result from intrinsic genetic alterations of tumor cells or acquired genetic and epigenetic changes, limit the long-lasting benefits of anti-cancer treatments. Tissue transglutaminase (TG2) has emerged as a putative gene involved in tumor cell drug resistance and evasion of apoptosis. Although some reports have indicated that TG2 can suppress tumor growth and enhance the growth inhibitory effects of anti-tumor agents, several studies have presented both pro-survival and anti-apoptotic roles for TG2 in malignant cells. Increased TG2 expression has been found in several tumors, where it was considered a potential negative prognostic marker, and it is often associated with advanced stages of disease, metastatic spread and drug resistance. TG2 mediates drug resistance through the activation of survival pathways and the inhibition of apoptosis, but also by regulating extracellular matrix (ECM) formation, the epithelial-to-mesenchymal transition (EMT) or autophagy. Because TG2 knockdown or inhibition of TG2 enzymatic activity may reverse drug resistance and sensitize cancer cells to drug-induced apoptosis, many small molecules capable of blocking TG2 have recently been developed. Additional insight into the multifunctional nature of TG2 as well as translational studies concerning the correlation between TG2 expression, function or location and cancer behavior will aid in translating these findings into new therapeutic approaches for cancer patients. Springer Vienna 2011-12-01 2013 /pmc/articles/PMC3535412/ /pubmed/22130737 http://dx.doi.org/10.1007/s00726-011-1167-9 Text en © The Author(s) 2011 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Invited Review Budillon, Alfredo Carbone, Carmine Di Gennaro, Elena Tissue transglutaminase: a new target to reverse cancer drug resistance |
title | Tissue transglutaminase: a new target to reverse cancer drug resistance |
title_full | Tissue transglutaminase: a new target to reverse cancer drug resistance |
title_fullStr | Tissue transglutaminase: a new target to reverse cancer drug resistance |
title_full_unstemmed | Tissue transglutaminase: a new target to reverse cancer drug resistance |
title_short | Tissue transglutaminase: a new target to reverse cancer drug resistance |
title_sort | tissue transglutaminase: a new target to reverse cancer drug resistance |
topic | Invited Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535412/ https://www.ncbi.nlm.nih.gov/pubmed/22130737 http://dx.doi.org/10.1007/s00726-011-1167-9 |
work_keys_str_mv | AT budillonalfredo tissuetransglutaminaseanewtargettoreversecancerdrugresistance AT carbonecarmine tissuetransglutaminaseanewtargettoreversecancerdrugresistance AT digennaroelena tissuetransglutaminaseanewtargettoreversecancerdrugresistance |