Cargando…
Network Self-Organization Explains the Statistics and Dynamics of Synaptic Connection Strengths in Cortex
The information processing abilities of neural circuits arise from their synaptic connection patterns. Understanding the laws governing these connectivity patterns is essential for understanding brain function. The overall distribution of synaptic strengths of local excitatory connections in cortex...
Autores principales: | Zheng, Pengsheng, Dimitrakakis, Christos, Triesch, Jochen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536614/ https://www.ncbi.nlm.nih.gov/pubmed/23300431 http://dx.doi.org/10.1371/journal.pcbi.1002848 |
Ejemplares similares
-
Nonlinear Dynamics Analysis of a Self-Organizing Recurrent Neural Network: Chaos Waning
por: Eser, Jürgen, et al.
Publicado: (2014) -
Self-organization of complex cortex-like wiring in a spiking neural network model
por: Miner, Daniel, et al.
Publicado: (2015) -
A unifying theory of synaptic long-term plasticity based on a sparse distribution of synaptic strength
por: Krieg, Daniel, et al.
Publicado: (2014) -
Plasticity-Driven Self-Organization under Topological Constraints Accounts for Non-random Features of Cortical Synaptic Wiring
por: Miner, Daniel, et al.
Publicado: (2016) -
SORN: A Self-Organizing Recurrent Neural Network
por: Lazar, Andreea, et al.
Publicado: (2009)