Cargando…

β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma

Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. β-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, incl...

Descripción completa

Detalles Bibliográficos
Autores principales: Francis, Jeffrey C., Thomsen, Martin K., Taketo, Makoto M., Swain, Amanda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536663/
https://www.ncbi.nlm.nih.gov/pubmed/23300485
http://dx.doi.org/10.1371/journal.pgen.1003180
_version_ 1782254779801534464
author Francis, Jeffrey C.
Thomsen, Martin K.
Taketo, Makoto M.
Swain, Amanda
author_facet Francis, Jeffrey C.
Thomsen, Martin K.
Taketo, Makoto M.
Swain, Amanda
author_sort Francis, Jeffrey C.
collection PubMed
description Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. β-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, including prostate cancer. However, expression studies on human prostate cancer samples are unclear on the role this protein plays in this disease. We have used in vivo genetic studies in the embryo and adult to extend our understanding of the role of β-Catenin in the normal and neoplastic prostate. Our gene deletion analysis revealed that prostate epithelial β-Catenin is required for embryonic prostate growth and branching but is dispensable in the normal adult organ. During development, β-Catenin controls the number of progenitors in the epithelial buds and regulates a discrete network of genes, including c-Myc and Nkx3.1. Deletion of β-Catenin in a Pten deleted model of castration-resistant prostate cancer demonstrated it is dispensable for disease progression in this setting. Complementary overexpression experiments, through in vivo protein stabilization, showed that β-Catenin promotes the formation of squamous epithelia during prostate development, even in the absence of androgens. β-Catenin overexpression in combination with Pten loss was able to drive progression to invasive carcinoma together with squamous metaplasia. These studies demonstrate that β-Catenin is essential for prostate development and that an inherent property of high levels of this protein in prostate epithelia is to drive squamous fate differentiation. In addition, they show that β-Catenin overexpression can promote invasive prostate cancer in a clinically relevant model of this disease. These data provide novel information on cancer progression pathways that give rise to lethal prostate disease in humans.
format Online
Article
Text
id pubmed-3536663
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-35366632013-01-08 β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma Francis, Jeffrey C. Thomsen, Martin K. Taketo, Makoto M. Swain, Amanda PLoS Genet Research Article Prostate cancer is a major cause of male death in the Western world, but few frequent genetic alterations that drive prostate cancer initiation and progression have been identified. β-Catenin is essential for many developmental processes and has been implicated in tumorigenesis in many tissues, including prostate cancer. However, expression studies on human prostate cancer samples are unclear on the role this protein plays in this disease. We have used in vivo genetic studies in the embryo and adult to extend our understanding of the role of β-Catenin in the normal and neoplastic prostate. Our gene deletion analysis revealed that prostate epithelial β-Catenin is required for embryonic prostate growth and branching but is dispensable in the normal adult organ. During development, β-Catenin controls the number of progenitors in the epithelial buds and regulates a discrete network of genes, including c-Myc and Nkx3.1. Deletion of β-Catenin in a Pten deleted model of castration-resistant prostate cancer demonstrated it is dispensable for disease progression in this setting. Complementary overexpression experiments, through in vivo protein stabilization, showed that β-Catenin promotes the formation of squamous epithelia during prostate development, even in the absence of androgens. β-Catenin overexpression in combination with Pten loss was able to drive progression to invasive carcinoma together with squamous metaplasia. These studies demonstrate that β-Catenin is essential for prostate development and that an inherent property of high levels of this protein in prostate epithelia is to drive squamous fate differentiation. In addition, they show that β-Catenin overexpression can promote invasive prostate cancer in a clinically relevant model of this disease. These data provide novel information on cancer progression pathways that give rise to lethal prostate disease in humans. Public Library of Science 2013-01-03 /pmc/articles/PMC3536663/ /pubmed/23300485 http://dx.doi.org/10.1371/journal.pgen.1003180 Text en © 2013 Francis et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Francis, Jeffrey C.
Thomsen, Martin K.
Taketo, Makoto M.
Swain, Amanda
β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title_full β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title_fullStr β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title_full_unstemmed β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title_short β-Catenin Is Required for Prostate Development and Cooperates with Pten Loss to Drive Invasive Carcinoma
title_sort β-catenin is required for prostate development and cooperates with pten loss to drive invasive carcinoma
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536663/
https://www.ncbi.nlm.nih.gov/pubmed/23300485
http://dx.doi.org/10.1371/journal.pgen.1003180
work_keys_str_mv AT francisjeffreyc bcateninisrequiredforprostatedevelopmentandcooperateswithptenlosstodriveinvasivecarcinoma
AT thomsenmartink bcateninisrequiredforprostatedevelopmentandcooperateswithptenlosstodriveinvasivecarcinoma
AT taketomakotom bcateninisrequiredforprostatedevelopmentandcooperateswithptenlosstodriveinvasivecarcinoma
AT swainamanda bcateninisrequiredforprostatedevelopmentandcooperateswithptenlosstodriveinvasivecarcinoma