Cargando…

Downregulation of TRAF2 Mediates NIK-Induced Pancreatic Cancer Cell Proliferation and Tumorigenicity

BACKGROUND: Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC) and both classical and alternative NF-κB activation pathways have been implicated. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that activation of the alternative pathway is a source for the high basal NF-...

Descripción completa

Detalles Bibliográficos
Autores principales: Döppler, Heike, Liou, Geou-Yarh, Storz, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3536768/
https://www.ncbi.nlm.nih.gov/pubmed/23301098
http://dx.doi.org/10.1371/journal.pone.0053676
Descripción
Sumario:BACKGROUND: Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC) and both classical and alternative NF-κB activation pathways have been implicated. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK). We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2) as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells. CONCLUSIONS/SIGNIFICANCE: Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer.