Cargando…

Type I interferon and pattern recognition receptor signaling following particulate matter inhalation

BACKGROUND: Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an explo...

Descripción completa

Detalles Bibliográficos
Autores principales: Erdely, Aaron, Antonini, James M, Salmen-Muniz, Rebecca, Liston, Angie, Hulderman, Tracy, Simeonova, Petia P, Kashon, Michael L, Li, Shengqiao, Gu, Ja K, Stone, Samuel, Chen, Bean T, Frazer, David G, Zeidler-Erdely, Patti C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537608/
https://www.ncbi.nlm.nih.gov/pubmed/22776377
http://dx.doi.org/10.1186/1743-8977-9-25
_version_ 1782254880033865728
author Erdely, Aaron
Antonini, James M
Salmen-Muniz, Rebecca
Liston, Angie
Hulderman, Tracy
Simeonova, Petia P
Kashon, Michael L
Li, Shengqiao
Gu, Ja K
Stone, Samuel
Chen, Bean T
Frazer, David G
Zeidler-Erdely, Patti C
author_facet Erdely, Aaron
Antonini, James M
Salmen-Muniz, Rebecca
Liston, Angie
Hulderman, Tracy
Simeonova, Petia P
Kashon, Michael L
Li, Shengqiao
Gu, Ja K
Stone, Samuel
Chen, Bean T
Frazer, David G
Zeidler-Erdely, Patti C
author_sort Erdely, Aaron
collection PubMed
description BACKGROUND: Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m(3) for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. RESULTS: The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. CONCLUSION: This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.
format Online
Article
Text
id pubmed-3537608
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35376082013-01-10 Type I interferon and pattern recognition receptor signaling following particulate matter inhalation Erdely, Aaron Antonini, James M Salmen-Muniz, Rebecca Liston, Angie Hulderman, Tracy Simeonova, Petia P Kashon, Michael L Li, Shengqiao Gu, Ja K Stone, Samuel Chen, Bean T Frazer, David G Zeidler-Erdely, Patti C Part Fibre Toxicol Research BACKGROUND: Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m(3) for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. RESULTS: The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. CONCLUSION: This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure. BioMed Central 2012-07-09 /pmc/articles/PMC3537608/ /pubmed/22776377 http://dx.doi.org/10.1186/1743-8977-9-25 Text en Copyright ©2012 Erdely et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Erdely, Aaron
Antonini, James M
Salmen-Muniz, Rebecca
Liston, Angie
Hulderman, Tracy
Simeonova, Petia P
Kashon, Michael L
Li, Shengqiao
Gu, Ja K
Stone, Samuel
Chen, Bean T
Frazer, David G
Zeidler-Erdely, Patti C
Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title_full Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title_fullStr Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title_full_unstemmed Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title_short Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
title_sort type i interferon and pattern recognition receptor signaling following particulate matter inhalation
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537608/
https://www.ncbi.nlm.nih.gov/pubmed/22776377
http://dx.doi.org/10.1186/1743-8977-9-25
work_keys_str_mv AT erdelyaaron typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT antoninijamesm typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT salmenmunizrebecca typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT listonangie typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT huldermantracy typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT simeonovapetiap typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT kashonmichaell typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT lishengqiao typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT gujak typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT stonesamuel typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT chenbeant typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT frazerdavidg typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation
AT zeidlererdelypattic typeiinterferonandpatternrecognitionreceptorsignalingfollowingparticulatematterinhalation