Cargando…
Analysis of Replication Intermediates Indicates That Drosophila melanogaster Mitochondrial DNA Replicates by a Strand-Coupled Theta Mechanism
Mitochondrial DNA synthesis is necessary for the normal function of the organelle and for the eukaryotic organism as a whole. Here we demonstrate, using two-dimensional agarose gel electrophoresis to analyse replication intermediates, that unidirectional, strand-coupled DNA synthesis is the prevalen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3537619/ https://www.ncbi.nlm.nih.gov/pubmed/23308172 http://dx.doi.org/10.1371/journal.pone.0053249 |
Sumario: | Mitochondrial DNA synthesis is necessary for the normal function of the organelle and for the eukaryotic organism as a whole. Here we demonstrate, using two-dimensional agarose gel electrophoresis to analyse replication intermediates, that unidirectional, strand-coupled DNA synthesis is the prevalent mode of mtDNA replication in Drosophila melanogaster. Commencing within the single, extended non-coding region (NCR), replication proceeds around the circular genome, manifesting an irregular rate of elongation, and pausing frequently in specific regions. Evidence for a limited contribution of strand-asynchronous DNA synthesis was found in a subset of mtDNA molecules, but confined to the ribosomal RNA gene region, just downstream of the NCR. Our findings imply that strand-coupled replication is widespread amongst metazoans, and should inform future research on mtDNA metabolism in D. melanogaster. |
---|