Cargando…

Differential Transcriptional Regulation of meis1 by Gfi1b and Its Co-Factors LSD1 and CoREST

Gfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional targets were identified by chromatin immunoprecipitation and...

Descripción completa

Detalles Bibliográficos
Autores principales: Chowdhury, Asif H., Ramroop, Johnny R., Upadhyay, Ghanshyam, Sengupta, Ananya, Andrzejczyk, Anna, Saleque, Shireen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538684/
https://www.ncbi.nlm.nih.gov/pubmed/23308270
http://dx.doi.org/10.1371/journal.pone.0053666
Descripción
Sumario:Gfi1b (growth factor independence 1b) is a zinc finger transcription factor essential for development of the erythroid and megakaryocytic lineages. To elucidate the mechanism underlying Gfi1b function, potential downstream transcriptional targets were identified by chromatin immunoprecipitation and expression profiling approaches. The combination of these approaches revealed the oncogene meis1, which encodes a homeobox protein, as a direct and prominent target of Gfi1b. Examination of the meis1 promoter sequence revealed multiple Gfi1/1b consensus binding motifs. Distinct regions of the promoter were occupied by Gfi1b and its cofactors LSD1 and CoREST/Rcor1, in erythroid cells but not in the closely related megakaryocyte lineage. Accordingly, Meis1 was significantly upregulated in LSD1 inhibited erythroid cells, but not in megakaryocytes. This lineage specific upregulation in Meis1 expression was accompanied by a parallel increase in di-methyl histone3 lysine4 levels in the Meis1 promoter in LSD1 inhibited, erythroid cells. Meis1 was also substantially upregulated in gfi1b−/− fetal liver cells along with its transcriptional partners Pbx1 and several Hox messages. Elevated Meis1 message levels persisted in gfi1b mutant fetal liver cells differentiated along the erythroid lineage, relative to wild type. However, cells differentiated along the megakaryocytic lineage, exhibited no difference in Meis1 levels between controls and mutants. Transfection experiments further demonstrated specific repression of meis1 promoter driven reporters by wild type Gfi1b but neither by a SNAG domain mutant nor by a DNA binding deficient one, thus confirming direct functional regulation of this promoter by the Gfi1b transcriptional complex. Overall, our results demonstrate direct yet differential regulation of meis1 transcription by Gfi1b in distinct hematopoietic lineages thus revealing it to be a common, albeit lineage specific, target of both Gfi1b and its paralog Gfi1.