Cargando…

Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection

BACKGROUND: Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessi...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukherjee, Krishnendu, Fischer, Rainer, Vilcinskas, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538701/
https://www.ncbi.nlm.nih.gov/pubmed/23035888
http://dx.doi.org/10.1186/1742-9994-9-25
_version_ 1782254997090598912
author Mukherjee, Krishnendu
Fischer, Rainer
Vilcinskas, Andreas
author_facet Mukherjee, Krishnendu
Fischer, Rainer
Vilcinskas, Andreas
author_sort Mukherjee, Krishnendu
collection PubMed
description BACKGROUND: Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. RESULTS: We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase), the regulation of sepsis (inhibitor of metalloproteinases from insects) and host defense (antimicrobial peptides), and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. CONCLUSIONS: Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection.
format Online
Article
Text
id pubmed-3538701
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35387012013-01-10 Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection Mukherjee, Krishnendu Fischer, Rainer Vilcinskas, Andreas Front Zool Research BACKGROUND: Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs) whose opposing activities are tightly regulated. The acetylation of histones by HATs increases DNA accessibility and promotes gene expression, whereas the removal of acetyl groups by HDACs has the opposite effect. RESULTS: We explored the role of HDACs and HATs in epigenetic reprogramming during metamorphosis, wounding and infection in the lepidopteran model host Galleria mellonella. We measured the expression of genes encoding components of HATs and HDACs to monitor the transcriptional activity of each enzyme complex and found that both enzymes were upregulated during pupation. Specific HAT inhibitors were able to postpone pupation and to reduce insect survival following wounding, whereas HDAC inhibitors accelerated pupation and increased survival. The administration of HDAC inhibitors modulated the expression of effector genes with key roles in tissue remodeling (matrix metalloproteinase), the regulation of sepsis (inhibitor of metalloproteinases from insects) and host defense (antimicrobial peptides), and simultaneously induced HAT activity, suggesting that histone acetylation is regulated by a feedback mechanism. We also discovered that both the entomopathogenic fungus Metarhizium anisopliae and the human bacterial pathogen Listeria monocytogenes can delay metamorphosis in G. mellonella by skewing the HDAC/HAT balance. CONCLUSIONS: Our study provides for the first evidence that pathogenic bacteria can interfere with the regulation of HDACs and HATs in insects which appear to manipulate host immunity and development. We conclude that histone acetylation/deacetylation in insects mediates transcriptional reprogramming during metamorphosis and in response to wounding and infection. BioMed Central 2012-10-04 /pmc/articles/PMC3538701/ /pubmed/23035888 http://dx.doi.org/10.1186/1742-9994-9-25 Text en Copyright ©2012 Mukherjee et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Mukherjee, Krishnendu
Fischer, Rainer
Vilcinskas, Andreas
Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title_full Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title_fullStr Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title_full_unstemmed Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title_short Histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
title_sort histone acetylation mediates epigenetic regulation of transcriptional reprogramming in insects during metamorphosis, wounding and infection
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538701/
https://www.ncbi.nlm.nih.gov/pubmed/23035888
http://dx.doi.org/10.1186/1742-9994-9-25
work_keys_str_mv AT mukherjeekrishnendu histoneacetylationmediatesepigeneticregulationoftranscriptionalreprogrammingininsectsduringmetamorphosiswoundingandinfection
AT fischerrainer histoneacetylationmediatesepigeneticregulationoftranscriptionalreprogrammingininsectsduringmetamorphosiswoundingandinfection
AT vilcinskasandreas histoneacetylationmediatesepigeneticregulationoftranscriptionalreprogrammingininsectsduringmetamorphosiswoundingandinfection