Cargando…

Activated and inactivated PPARs-γ modulate experimentally induced colitis in rats

BACKGROUND: This study sought to define the mechanism by which PPAR-γ ligands affect the course of experimentally induced colitis in rats. MATERIAL/METHODS: Inflammation was induced in Wistar rats by a single rectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). The antagonist of PPA...

Descripción completa

Detalles Bibliográficos
Autores principales: Celiński, Krzysztof, Dworzański, Tomasz, Korolczuk, Agnieszka, Słomka, Maria, Radej, Sebastian, Cichoż-Lach, Halina, Mądro, Agnieszka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: International Scientific Literature, Inc. 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539512/
https://www.ncbi.nlm.nih.gov/pubmed/21455100
http://dx.doi.org/10.12659/MSM.881712
Descripción
Sumario:BACKGROUND: This study sought to define the mechanism by which PPAR-γ ligands affect the course of experimentally induced colitis in rats. MATERIAL/METHODS: Inflammation was induced in Wistar rats by a single rectal administration of 2,4,6,-trinitrobenzene sulfonic acid (TNBS). The antagonist of PPARγ antagonist, bisphenol A diglycidyl ether (BADGE), was administrated intraperitoneally 120 mg/kg 4 times every other day. Rosiglitazone 8 mg/kg was administrated by gastric tube 4 times. Body weight was measured daily. After killing, the large intestinal tissue was weighed and collected for histopathologic and immunoenzymatic tests. Levels of IL-6, IL-10, and myeloperoxidase (MPO) were determined in serum and in intestinal homogenates. RESULTS: Rats receiving rosiglitazone had higher body weight, whereas large intestine weight/length ratio was lower; histology showed fewer inflammatory markers. Rats receiving TNBS and TNBS along with BADGE had more intensive inflammatory changes. Rosiglitazone alone decreased expression of IL-6; used with TNBS it decreased expression of MPO in intestinal tissue, yet did not increase the expression of IL-10. Decreased levels of MPO indicate reduced neutrophil-dependent immune response. The antagonist of PPAR-γ increased IL-6 in serum and decreased IL-10 in intestinal homogenates. Bisphenol A diglycidyl ether administrated to healthy animals increases serum IL-6 levels. CONCLUSIONS: Rosiglitazone inhibits experimental inflammation; administration of its selective antagonist abolishes this protective influence. Rosiglitazone inhibits expression of proinflammatory IL-6 and does not affect IL-10. Agonists of PPARs-γ are possibilities for inflammatory bowel disease prevention. Exogenous substances blocking PPARs-γ may contribute to development or relapse of nonspecific inflammatory bowel diseases.