Cargando…
Network architecture underlying maximal separation of neuronal representations
One of the most basic and general tasks faced by all nervous systems is extracting relevant information from the organism's surrounding world. While physical signals available to sensory systems are often continuous, variable, overlapping, and noisy, high-level neuronal representations used for...
Autor principal: | Jortner, Ron A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539730/ https://www.ncbi.nlm.nih.gov/pubmed/23316159 http://dx.doi.org/10.3389/fneng.2012.00019 |
Ejemplares similares
-
A Neuronal Network Model for Pitch Selectivity and Representation
por: Huang, Chengcheng, et al.
Publicado: (2016) -
Dynamic stability of sequential stimulus representations in adapting neuronal networks
por: Duarte, Renato C. F., et al.
Publicado: (2014) -
Recurrent Spiking Neural Network Learning Based on a Competitive Maximization of Neuronal Activity
por: Demin, Vyacheslav, et al.
Publicado: (2018) -
Modular architecture facilitates noise-driven control of synchrony in neuronal networks
por: Yamamoto, Hideaki, et al.
Publicado: (2023) -
Representation learning in the artificial and biological neural networks underlying sensorimotor integration
por: Suhaimi, Ahmad, et al.
Publicado: (2022)