Cargando…

Social Factors and Leukocyte DNA Methylation of Repetitive Sequences: The Multi-Ethnic Study of Atherosclerosis

Epigenetic changes are a potential mechanism contributing to race/ethnic and socioeconomic disparities in health. However, there is scant evidence of the race/ethnic and socioeconomic patterning of epigenetic marks. We used data from the Multi-Ethnic Study of Atherosclerosis Stress Study (N = 988) t...

Descripción completa

Detalles Bibliográficos
Autores principales: Subramanyam, Malavika A., Diez-Roux, Ana V., Pilsner, J. Richard, Villamor, Eduardo, Donohue, Kathleen M., Liu, Yongmei, Jenny, Nancy S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3539988/
https://www.ncbi.nlm.nih.gov/pubmed/23320117
http://dx.doi.org/10.1371/journal.pone.0054018
Descripción
Sumario:Epigenetic changes are a potential mechanism contributing to race/ethnic and socioeconomic disparities in health. However, there is scant evidence of the race/ethnic and socioeconomic patterning of epigenetic marks. We used data from the Multi-Ethnic Study of Atherosclerosis Stress Study (N = 988) to describe age- and gender- independent associations of race/ethnicity and socioeconomic status (SES) with methylation of Alu and LINE-1 repetitive elements in leukocyte DNA. Mean Alu and Line 1 methylation in the full sample were 24% and 81% respectively. In multivariable linear regression models, African-Americans had 0.27% (p<0.01) and Hispanics 0.20% (p<0.05) lower Alu methylation than whites. In contrast, African-Americans had 0.41% (p<0.01) and Hispanics 0.39% (p<0.01) higher LINE-1 methylation than whites. These associations remained after adjustment for SES. In addition, a one standard deviation higher wealth was associated with 0.09% (p<0.01) higher Alu and 0.15% (p<0.01) lower LINE-1 methylation in age- and gender- adjusted models. Additional adjustment for race/ethnicity did not alter this pattern. No associations were observed with income, education or childhood SES. Our findings, from a large community-based sample, suggest that DNA methylation is socially patterned. Future research, including studies of gene-specific methylation, is needed to understand better the opposing associations of Alu and LINE-1 methylation with race/ethnicity and wealth as well as the extent to which small methylation changes in these sequences may influence disparities in health.