Cargando…
Hemorrhage Control of Liver Injury by Short Electrical Pulses
Trauma is a leading cause of death among young individuals globally and uncontrolled hemorrhage is the leading cause of preventable death. Controlling hemorrhage from a solid organ is often very challenging in military as well as civilian setting. Recent studies demonstrated reversible vasoconstrict...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540045/ https://www.ncbi.nlm.nih.gov/pubmed/23320063 http://dx.doi.org/10.1371/journal.pone.0049852 |
Sumario: | Trauma is a leading cause of death among young individuals globally and uncontrolled hemorrhage is the leading cause of preventable death. Controlling hemorrhage from a solid organ is often very challenging in military as well as civilian setting. Recent studies demonstrated reversible vasoconstriction and irreversible thrombosis following application of microseconds-long electrical pulses. The current paper describes for the first time reduction in bleeding from the injured liver in rat and rabbit model in-vivo. We applied short (25 and 50 µs) electrical pulses of 1250 V/cm to rats and rabbit liver following induction of standardized penetrating injury and measured the amount of bleeding into the abdominal cavity one hour post injury. We found a 60 and 36 percent reduction in blood volume in rats treated by 25 µs and 50 µs, respectively (P<0.001). Similar results were found for the rabbit model. Finite element simulation revealed that the effect was likely non-thermal. Histological evaluation found local cellular injury with intravascular thrombosis. Further research should be done to fully explore the mechanism of action and the potential use of short electric pulses for hemorrhage control. |
---|