Cargando…

Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond

This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The result...

Descripción completa

Detalles Bibliográficos
Autores principales: Erb-Downward, John R., Sadighi Akha, Amir A., Wang, Juan, Shen, Ning, He, Bei, Martinez, Fernando J., Gyetko, Margaret R., Curtis, Jeffrey L., Huffnagle, Gary B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540687/
https://www.ncbi.nlm.nih.gov/pubmed/23336065
http://dx.doi.org/10.1038/srep00774
_version_ 1782255243558387712
author Erb-Downward, John R.
Sadighi Akha, Amir A.
Wang, Juan
Shen, Ning
He, Bei
Martinez, Fernando J.
Gyetko, Margaret R.
Curtis, Jeffrey L.
Huffnagle, Gary B.
author_facet Erb-Downward, John R.
Sadighi Akha, Amir A.
Wang, Juan
Shen, Ning
He, Bei
Martinez, Fernando J.
Gyetko, Margaret R.
Curtis, Jeffrey L.
Huffnagle, Gary B.
author_sort Erb-Downward, John R.
collection PubMed
description This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved.
format Online
Article
Text
id pubmed-3540687
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-35406872013-01-18 Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond Erb-Downward, John R. Sadighi Akha, Amir A. Wang, Juan Shen, Ning He, Bei Martinez, Fernando J. Gyetko, Margaret R. Curtis, Jeffrey L. Huffnagle, Gary B. Sci Rep Article This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved. Nature Publishing Group 2012-10-26 /pmc/articles/PMC3540687/ /pubmed/23336065 http://dx.doi.org/10.1038/srep00774 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Erb-Downward, John R.
Sadighi Akha, Amir A.
Wang, Juan
Shen, Ning
He, Bei
Martinez, Fernando J.
Gyetko, Margaret R.
Curtis, Jeffrey L.
Huffnagle, Gary B.
Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title_full Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title_fullStr Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title_full_unstemmed Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title_short Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
title_sort use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540687/
https://www.ncbi.nlm.nih.gov/pubmed/23336065
http://dx.doi.org/10.1038/srep00774
work_keys_str_mv AT erbdownwardjohnr useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT sadighiakhaamira useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT wangjuan useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT shenning useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT hebei useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT martinezfernandoj useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT gyetkomargaretr useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT curtisjeffreyl useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond
AT huffnaglegaryb useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond