Cargando…
Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond
This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The result...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540687/ https://www.ncbi.nlm.nih.gov/pubmed/23336065 http://dx.doi.org/10.1038/srep00774 |
_version_ | 1782255243558387712 |
---|---|
author | Erb-Downward, John R. Sadighi Akha, Amir A. Wang, Juan Shen, Ning He, Bei Martinez, Fernando J. Gyetko, Margaret R. Curtis, Jeffrey L. Huffnagle, Gary B. |
author_facet | Erb-Downward, John R. Sadighi Akha, Amir A. Wang, Juan Shen, Ning He, Bei Martinez, Fernando J. Gyetko, Margaret R. Curtis, Jeffrey L. Huffnagle, Gary B. |
author_sort | Erb-Downward, John R. |
collection | PubMed |
description | This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved. |
format | Online Article Text |
id | pubmed-3540687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-35406872013-01-18 Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond Erb-Downward, John R. Sadighi Akha, Amir A. Wang, Juan Shen, Ning He, Bei Martinez, Fernando J. Gyetko, Margaret R. Curtis, Jeffrey L. Huffnagle, Gary B. Sci Rep Article This study investigated the use of direct gradient analysis of bacterial 16S pyrosequencing surveys to identify relevant bacterial community signals in the midst of a "noisy" background, and to facilitate hypothesis-testing both within and beyond the realm of ecological surveys. The results, utilizing 3 different real world data sets, demonstrate the utility of adding direct gradient analysis to any analysis that draws conclusions from indirect methods such as Principal Component Analysis (PCA) and Principal Coordinates Analysis (PCoA). Direct gradient analysis produces testable models, and can identify significant patterns in the midst of noisy data. Additionally, we demonstrate that direct gradient analysis can be used with other kinds of multivariate data sets, such as flow cytometric data, to identify differentially expressed populations. The results of this study demonstrate the utility of direct gradient analysis in microbial ecology and in other areas of research where large multivariate data sets are involved. Nature Publishing Group 2012-10-26 /pmc/articles/PMC3540687/ /pubmed/23336065 http://dx.doi.org/10.1038/srep00774 Text en Copyright © 2012, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Erb-Downward, John R. Sadighi Akha, Amir A. Wang, Juan Shen, Ning He, Bei Martinez, Fernando J. Gyetko, Margaret R. Curtis, Jeffrey L. Huffnagle, Gary B. Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title | Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title_full | Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title_fullStr | Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title_full_unstemmed | Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title_short | Use of Direct Gradient Analysis to Uncover Biological Hypotheses in 16S Survey Data and Beyond |
title_sort | use of direct gradient analysis to uncover biological hypotheses in 16s survey data and beyond |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540687/ https://www.ncbi.nlm.nih.gov/pubmed/23336065 http://dx.doi.org/10.1038/srep00774 |
work_keys_str_mv | AT erbdownwardjohnr useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT sadighiakhaamira useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT wangjuan useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT shenning useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT hebei useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT martinezfernandoj useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT gyetkomargaretr useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT curtisjeffreyl useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond AT huffnaglegaryb useofdirectgradientanalysistouncoverbiologicalhypothesesin16ssurveydataandbeyond |