Cargando…
The Smoothing Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI
A wide range of studies show the capacity of multivariate statistical methods for fMRI to improve mapping of brain activations in a noisy environment. An advanced method uses local canonical correlation analysis (CCA) to encompass a group of neighboring voxels instead of looking at the single voxel...
Autores principales: | Cordes, Dietmar, Jin, Mingwu, Curran, Tim, Nandy, Rajesh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3540707/ https://www.ncbi.nlm.nih.gov/pubmed/23365555 http://dx.doi.org/10.1155/2012/738283 |
Ejemplares similares
-
Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data
por: Jin, Mingwu, et al.
Publicado: (2012) -
A technical review of canonical correlation analysis for neuroscience applications
por: Zhuang, Xiaowei, et al.
Publicado: (2020) -
Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation
por: Block, Kai Tobias, et al.
Publicado: (2008) -
Clustering-Constrained ICA for Ballistocardiogram Artifacts Removal in Simultaneous EEG-fMRI
por: Wang, Kai, et al.
Publicado: (2018) -
Energy-Period Profiles of Brain Networks in Group fMRI Resting-State Data: A Comparison of Empirical Mode Decomposition With the Short-Time Fourier Transform and the Discrete Wavelet Transform
por: Cordes, Dietmar, et al.
Publicado: (2021)