Cargando…

Cotinine inhibits the pro-inflammatory response initiated by multiple cell surface Toll-like receptors in monocytic THP cells

BACKGROUND: The primary, stable metabolite of nicotine [(S)-3-(1-methyl-2-pyrrolidinyl) pyridine] in humans is cotinine [(S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone]. We have previously shown that cotinine exposure induces convergence and amplification of the GSK3β-dependent PI3 kinase and choliner...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagaitkar, Juhi, Zeller, Iris, Renaud, Diane E, Scott, David A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541225/
https://www.ncbi.nlm.nih.gov/pubmed/23176969
http://dx.doi.org/10.1186/1617-9625-10-18
Descripción
Sumario:BACKGROUND: The primary, stable metabolite of nicotine [(S)-3-(1-methyl-2-pyrrolidinyl) pyridine] in humans is cotinine [(S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone]. We have previously shown that cotinine exposure induces convergence and amplification of the GSK3β-dependent PI3 kinase and cholinergic anti-inflammatory systems. The consequence is reduced pro-inflammatory cytokine secretion by human monocytes responding to bacteria or LPS, a TLR4 agonist. FINDINGS: Here we show that cotinine-induced inflammatory suppression may not be restricted to individual Toll-like receptors (TLRs). Indeed, in monocytic cells, cotinine suppresses the cytokine production that is normally resultant upon agonist-specific engagement of all of the major surface exposed TLRs (TLR 2/1; 2/6; 4 and 5), although the degree of suppression varies by TLR. CONCLUSIONS: These results provide further mechanistic insight into the increased susceptibility to multiple bacterial infections known to occur in smokers. They also establish THP-1 cells as a potentially suitable model with which to study the influence of tobacco components and metabolites on TLR-initiated inflammatory events.