Cargando…
Red-green color vision in three catarrhine primates
The evolution of the red-green visual subsystem in trichromatic primates has been linked to foraging advantages, specifically the detection of either ripe fruits or young leaves amid mature foliage, and to the intraspecific socio-sexual communication, namely the signal of the male rank, the mate cho...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Landes Bioscience
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541326/ https://www.ncbi.nlm.nih.gov/pubmed/23336029 http://dx.doi.org/10.4161/cib.21414 |
Sumario: | The evolution of the red-green visual subsystem in trichromatic primates has been linked to foraging advantages, specifically the detection of either ripe fruits or young leaves amid mature foliage, and to the intraspecific socio-sexual communication, namely the signal of the male rank, the mate choice and the reproductive strategies in females. New data should be added to the debate regarding the evolution of trichromatic color vision. Three catarrhine primates were observed to achieve this goal. The research was performed on captive groups of vervet monkeys (Chlorocebus aethiops), pig-tailed macaques (Macaca nemestrina) and chimpanzees (Pan troglodytes) housed at Parco Natura Viva - Garda Zoological Park (Italy). Using pairs of red-green bags containing the same hidden reward in comparable outdoor enclosures, we recorded the choices by observed individuals (n = 25) to investigate the role of color cues in choosing an object. The results indicate that chimpanzees used red color as cue to choose an object that contains food by showing a preference toward red objects; in contrast, vervet monkeys and pig-tailed macaques do not demonstrate a clear choice based on the color of the object. Our findings highlight the importance of the foraging hypothesis but not rule out the potential role of the intraspecific socio-sexual communication and may serve to add useful information to the debate regarding the adaptive value of the evolution of color vision in order to fill a phylogenetic gap from Old World monkeys to humans. Future studies should address the role of socio-sexual communication, such as the selection of the reproductive partner of both high genetic quality and with compatible genes, to determine how this influenced the evolution of color vision in non-human primates. |
---|