Cargando…

Lowe syndrome: Between primary cilia assembly and Rac1-mediated membrane remodeling

Lowe syndrome (LS) is a lethal X-linked genetic disease caused by functional deficiencies of the phosphatidlyinositol 5-phosphatase, Ocrl1. In the past four years, our lab described the first Ocrl1-specific cellular phenotypes using dermal fibroblasts from LS patients. These phenotypes, validated in...

Descripción completa

Detalles Bibliográficos
Autores principales: Madhivanan, Kayalvizhi, Mukherjee, Debarati, Aguilar, R. Claudio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Landes Bioscience 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541337/
https://www.ncbi.nlm.nih.gov/pubmed/23739214
http://dx.doi.org/10.4161/cib.21952
Descripción
Sumario:Lowe syndrome (LS) is a lethal X-linked genetic disease caused by functional deficiencies of the phosphatidlyinositol 5-phosphatase, Ocrl1. In the past four years, our lab described the first Ocrl1-specific cellular phenotypes using dermal fibroblasts from LS patients. These phenotypes, validated in an ocrl1-morphant zebrafish model, included membrane remodeling (cell migration/spreading, fluid-phase uptake) defects and primary cilia assembly abnormalities. On one hand, our findings unraveled cellular phenotypes likely to be involved in the observed developmental defects; on the other hand, these discoveries established LS as a ciliopathy-associated disease. This article discusses the possible mechanisms by which loss of Ocrl1 function may affect RhoGTPase signaling pathways leading to actin cytoskeleton rearrangements that underlie the observed cellular phenotypes.