Cargando…

Fluorescent property of 3-hydroxymethyl imidazo[1,2-a]pyridine and pyrimidine derivatives

BACKGROUND: Imidazo[1,2-a]pyridines and pyrimidines are important organic fluorophores which have been investigated as biomarkers and photochemical sensors. The effect on the luminescent property by substituents in the heterocycle and phenyl rings, have been studied as well. In this investigation, s...

Descripción completa

Detalles Bibliográficos
Autores principales: Velázquez-Olvera, Stephania, Salgado-Zamora, Héctor, Velázquez-Ponce, Manuel, Campos-Aldrete, Elena, Reyes-Arellano, Alicia, Pérez-González, Cuauhtémoc
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541357/
https://www.ncbi.nlm.nih.gov/pubmed/22871219
http://dx.doi.org/10.1186/1752-153X-6-83
Descripción
Sumario:BACKGROUND: Imidazo[1,2-a]pyridines and pyrimidines are important organic fluorophores which have been investigated as biomarkers and photochemical sensors. The effect on the luminescent property by substituents in the heterocycle and phenyl rings, have been studied as well. In this investigation, series of 3-hydroxymethyl imidazo[1,2-a]pyridines and pyrimidines were synthesized and evaluated in relation to fluorescence emission, based upon the hypothesis that the hydroxymethyl group may act as an enhancer of fluorescence intensity. RESULTS: Compounds of both series emitted light in organic solvents dilutions as well as in acidic and alkaline media. Quantitative fluorescence spectroscopy determined that both fused heterocycles fluoresced more intensely than the parent unsubstituted imidazo[1,2-a]azine fluorophore. In particular, 3-hydroxymethyl imidazo[1,2-a]pyridines fluoresced more intensely than 3-hydroxymethyl imidazo[1,2-a]pyrimidines, the latter emitting blue light at longer wavelengths, whereas the former emitted purple light. CONCLUSION: It was concluded that in most cases the hydroxymethyl moiety did act as an enhancer of the fluorescence intensity, however, a comparison made with the fluorescence emitted by 2-aryl imidazo[1,2-a]azines revealed that in some cases the hydroxymethyl substituent decreased the fluorescence intensity.