Cargando…

Gamma-tocotrienol reduces the triacylglycerol level in rat primary hepatocytes through regulation of fatty acid metabolism

The present study was carried out to investigate the effect of vitamin E analogs, especially gamma-tocotrienol (γ-T3), on hepatic TG accumulation and enzymes related to fatty acid metabolism in three types of rat primary hepatocytes: (1) normal hepatocytes, (2) hepatocytes incubated in the presence...

Descripción completa

Detalles Bibliográficos
Autores principales: Muto, Chie, Yachi, Rieko, Aoki, Yoshinori, Koike, Taisuke, Igarashi, Osamu, Kiyose, Chikako
Formato: Online Artículo Texto
Lenguaje:English
Publicado: the Society for Free Radical Research Japan 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541416/
https://www.ncbi.nlm.nih.gov/pubmed/23341695
http://dx.doi.org/10.3164/jcbn.12-97
Descripción
Sumario:The present study was carried out to investigate the effect of vitamin E analogs, especially gamma-tocotrienol (γ-T3), on hepatic TG accumulation and enzymes related to fatty acid metabolism in three types of rat primary hepatocytes: (1) normal hepatocytes, (2) hepatocytes incubated in the presence of palmitic acid (PA), and (3) hepatocytes with fat accumulation. Our results showed that γ-T3 significantly reduced the TG content of normal hepatocytes. γ-T3 also increased the expression of carnitine palmitoyltransferase 1 (CPT1A) mRNA, and tended to reduce that of sterol regulatory element binding protein 1c (SREBP-1c) mRNA. In addition, γ-T3 markedly suppressed the gene expression of both C/EBP homologous protein (CHOP) and SREBP-1c induced by PA. As these two genes are located downstream of endoplasmic reticulum (ER) stress, their suppression by γ-T3 might result from a decrease of ER stress. Moreover, γ-T3 suppressed the expression of interleukin 1β (IL-1β), which lies downstream of CHOP signaling. Taken together, our data suggest that γ-T3 might prevent hepatic steatosis and ameliorate ER stress and subsequent inflammation in the liver.