Cargando…

Tissue- and Plasma-Specific MicroRNA Signatures for Atherosclerotic Abdominal Aortic Aneurysm

BACKGROUND: Atherosclerotic abdominal aortic aneurysm (AAA) is a progressive, gradual aortic rupture that results in death in the absence of surgical intervention. Key factors that regulate initiation and progression of AAA are unknown, making targeted interventions difficult. MicroRNAs play a funda...

Descripción completa

Detalles Bibliográficos
Autores principales: Kin, Keiwa, Miyagawa, Shigeru, Fukushima, Satsuki, Shirakawa, Yukitoshi, Torikai, Kei, Shimamura, Kazuo, Daimon, Takashi, Kawahara, Yukio, Kuratani, Toru, Sawa, Yoshiki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3541608/
https://www.ncbi.nlm.nih.gov/pubmed/23316282
http://dx.doi.org/10.1161/JAHA.112.000745
Descripción
Sumario:BACKGROUND: Atherosclerotic abdominal aortic aneurysm (AAA) is a progressive, gradual aortic rupture that results in death in the absence of surgical intervention. Key factors that regulate initiation and progression of AAA are unknown, making targeted interventions difficult. MicroRNAs play a fundamental role in atherosclerosis, and atherosclerotic coronary artery disease is characterized by tissue- and plasma-specific microRNA signatures. However, little is known about microRNAs involved in AAA pathology. This study examined tissue and plasma microRNAs specifically associated with AAA. METHODS AND RESULTS: AAA and normal wall tissues were sampled from patients undergoing AAA repair (n=13; mean age, 68±6 years) and aortic valve replacement surgery (n=7; mean age, 66±4 years), respectively. MicroRNA expression was assessed by high-throughput microRNA arrays and validated by real-time polymerase chain reaction for individual microRNAs that showed significant expression differences in the initial screening. MicroRNAs related to fibrosis (miR-29b), inflammation (miR-124a, miR-146a, miR-155, and miR-223), and endothelium (miR-126, let-7 family members, and miR-21) were significantly upregulated in AAA tissue. Significant negative correlations were seen in expression levels of monocyte chemoattractant protein-1 and miR-124a, -146a, and -223; tumor necrosis factor-α and miR-126 and -223; and transforming growth factor-β and miR-146a. Expression of microRNAs, such as miR-29b, miR-124a, miR-155, and miR-223, that were upregulated in AAA tissue was significantly reduced in plasma of patients with AAA (n=23; mean age, 72±9 years) compared to healthy controls (n=12; mean age, 51±11 years) and patients with coronary artery disease (n=17; mean age, 71±9 years). CONCLUSIONS: The expression of some microRNAs was specifically upregulated in AAA tissue, warranting further studies on the microRNA function in AAA pathogenesis and on the possibility of using a microRNA biomarker for AAA diagnosis.