Cargando…

Differential expression of nitric oxide synthases in porcine aortic endothelial cells during LPS-induced apoptosis

BACKGROUND: It is well known that nitric oxide (NO) is generated by a family of constitutively (nNOS and eNOS) or inducibly (iNOS) expressed enzymes and takes part in different aspects of the inflammatory response; nevertheless, its effective role in the pathogenesis of multiple organ dysfunction an...

Descripción completa

Detalles Bibliográficos
Autores principales: Bernardini, Chiara, Greco, Francesca, Zannoni, Augusta, Bacci, Maria Laura, Seren, Eraldo, Forni, Monica
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542028/
https://www.ncbi.nlm.nih.gov/pubmed/23181483
http://dx.doi.org/10.1186/1476-9255-9-47
Descripción
Sumario:BACKGROUND: It is well known that nitric oxide (NO) is generated by a family of constitutively (nNOS and eNOS) or inducibly (iNOS) expressed enzymes and takes part in different aspects of the inflammatory response; nevertheless, its effective role in the pathogenesis of multiple organ dysfunction and septic shock is not fully understood. METHODS: To investigate the Nitric Oxide Synthases (NOSs) expression in endothelial cells during endotoxin exposure and the involvement of NO in lipopolysaccharide (LPS)-induced apoptosis, primary cultures of porcine Aortic Endothelial Cells (pAECs) were exposed to LPS for different time periods (1-24 h) and to LPS + L-NAME (15 h). RESULTS: Lipopolysaccharide induced an increase in mRNA and protein iNOS expression; on the contrary, the expression of eNOS was decreased. Furthermore, NOSs localisation was in part modified by LPS treatment. No alteration in the total level of Nitric Oxide was observed. L-NAME (5 mM) addition determined a slight decrease of LPS-induced apoptosis. CONCLUSIONS: Endotoxin treatment strongly influenced NOS expression with an upregulation of iNOS and a simultaneous down regulation of eNOS. Moreover, in our model, the involvement of NO on LPS-induced apoptosis is very modest, suggesting that different pathways are involved in the regulation of this process.