Cargando…
Fitting parametric random effects models in very large data sets with application to VHA national data
BACKGROUND: With the current focus on personalized medicine, patient/subject level inference is often of key interest in translational research. As a result, random effects models (REM) are becoming popular for patient level inference. However, for very large data sets that are characterized by larg...
Autores principales: | Gebregziabher, Mulugeta, Egede, Leonard, Gilbert, Gregory E, Hunt, Kelly, Nietert, Paul J, Mauldin, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542162/ https://www.ncbi.nlm.nih.gov/pubmed/23095325 http://dx.doi.org/10.1186/1471-2288-12-163 |
Ejemplares similares
-
Regional, Geographic, and Racial/Ethnic Variation in Glycemic Control in a National Sample of Veterans With Diabetes
por: Egede, Leonard E., et al.
Publicado: (2011) -
Impact of medical and psychiatric multi-morbidity on mortality in diabetes: emerging evidence
por: Lynch, Cheryl P, et al.
Publicado: (2014) -
Quantifying the Impact of Gestational Diabetes Mellitus, Maternal Weight and Race on Birthweight via Quantile Regression
por: Ellerbe, Caitlyn N., et al.
Publicado: (2013) -
Propensity score matching for multilevel spatial data: accounting for geographic confounding in health disparity studies
por: Davis, Melanie L., et al.
Publicado: (2021) -
Creating a 13-year National Longitudinal Cohort of veterans with chronic kidney disease
por: Ozieh, Mukoso N., et al.
Publicado: (2019)