Cargando…
In-silico predictive mutagenicity model generation using supervised learning approaches
BACKGROUND: Experimental screening of chemical compounds for biological activity is a time consuming and expensive practice. In silico predictive models permit inexpensive, rapid “virtual screening” to prioritize selection of compounds for experimental testing. Both experimental and in silico screen...
Autores principales: | Seal, Abhik, Passi, Anurag, Jaleel, UC Abdul, Wild, David J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542175/ https://www.ncbi.nlm.nih.gov/pubmed/22587596 http://dx.doi.org/10.1186/1758-2946-4-10 |
Ejemplares similares
-
Optimizing drug–target interaction prediction based on random walk on heterogeneous networks
por: Seal, Abhik, et al.
Publicado: (2015) -
Enhanced ranking of PknB Inhibitors using data fusion methods
por: Seal, Abhik, et al.
Publicado: (2013) -
IILLS: predicting virus-receptor interactions based on similarity and semi-supervised learning
por: Yan, Cheng, et al.
Publicado: (2019) -
Chemical toxicity prediction based on semi-supervised learning and graph convolutional neural network
por: Chen, Jiarui, et al.
Publicado: (2021) -
MDDI-SCL: predicting multi-type drug-drug interactions via supervised contrastive learning
por: Lin, Shenggeng, et al.
Publicado: (2022)