Cargando…
Combining multiple hypothesis testing and affinity propagation clustering leads to accurate, robust and sample size independent classification on gene expression data
BACKGROUND: A feature selection method in microarray gene expression data should be independent of platform, disease and dataset size. Our hypothesis is that among the statistically significant ranked genes in a gene list, there should be clusters of genes that share similar biological functions rel...
Autores principales: | Sakellariou, Argiris, Sanoudou, Despina, Spyrou, George |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542193/ https://www.ncbi.nlm.nih.gov/pubmed/23075381 http://dx.doi.org/10.1186/1471-2105-13-270 |
Ejemplares similares
-
Markov clustering versus affinity propagation for the partitioning of protein interaction graphs
por: Vlasblom, James, et al.
Publicado: (2009) -
mAPKL: R/ Bioconductor package for detecting gene exemplars and revealing their characteristics
por: Sakellariou, Argiris, et al.
Publicado: (2015) -
Classification of neocortical interneurons using affinity propagation
por: Santana, Roberto, et al.
Publicado: (2013) -
Determining sample size for progression criteria for pragmatic pilot RCTs: the hypothesis test strikes back!
por: Lewis, M., et al.
Publicado: (2021) -
Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites
por: Wolschin, Florian, et al.
Publicado: (2005)