Cargando…
Fitting and Interpreting Occupancy Models
We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them diffi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542396/ https://www.ncbi.nlm.nih.gov/pubmed/23326323 http://dx.doi.org/10.1371/journal.pone.0052015 |
_version_ | 1782255509201485824 |
---|---|
author | Welsh, Alan H. Lindenmayer, David B. Donnelly, Christine F. |
author_facet | Welsh, Alan H. Lindenmayer, David B. Donnelly, Christine F. |
author_sort | Welsh, Alan H. |
collection | PubMed |
description | We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology because we expect spatial variance in abundance) and detection depends on abundance, the standard analysis suffers bias (attenuation in detection, biased estimates of occupancy and potentially finding misleading relationships between occupancy and other covariates), asymmetric sampling distributions, and slow convergence of the sampling distributions to normality. The key result of this paper is that the biases are of similar magnitude to those obtained when we ignore non-detection entirely. The fact that abundance is subject to detection error and hence is not directly observable, means that we cannot tell when bias is present (or, equivalently, how large it is) and we cannot adjust for it. This implies that we cannot tell which fit is better: the fit from the occupancy model or the fit ignoring the possibility of detection error. Therefore trying to adjust occupancy models for non-detection can be as misleading as ignoring non-detection completely. Ignoring non-detection can actually be better than trying to adjust for it. |
format | Online Article Text |
id | pubmed-3542396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35423962013-01-16 Fitting and Interpreting Occupancy Models Welsh, Alan H. Lindenmayer, David B. Donnelly, Christine F. PLoS One Research Article We show that occupancy models are more difficult to fit than is generally appreciated because the estimating equations often have multiple solutions, including boundary estimates which produce fitted probabilities of zero or one. The estimates are unstable when the data are sparse, making them difficult to interpret, and, even in ideal situations, highly variable. As a consequence, making accurate inference is difficult. When abundance varies over sites (which is the general rule in ecology because we expect spatial variance in abundance) and detection depends on abundance, the standard analysis suffers bias (attenuation in detection, biased estimates of occupancy and potentially finding misleading relationships between occupancy and other covariates), asymmetric sampling distributions, and slow convergence of the sampling distributions to normality. The key result of this paper is that the biases are of similar magnitude to those obtained when we ignore non-detection entirely. The fact that abundance is subject to detection error and hence is not directly observable, means that we cannot tell when bias is present (or, equivalently, how large it is) and we cannot adjust for it. This implies that we cannot tell which fit is better: the fit from the occupancy model or the fit ignoring the possibility of detection error. Therefore trying to adjust occupancy models for non-detection can be as misleading as ignoring non-detection completely. Ignoring non-detection can actually be better than trying to adjust for it. Public Library of Science 2013-01-10 /pmc/articles/PMC3542396/ /pubmed/23326323 http://dx.doi.org/10.1371/journal.pone.0052015 Text en © 2013 Welsh et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Welsh, Alan H. Lindenmayer, David B. Donnelly, Christine F. Fitting and Interpreting Occupancy Models |
title | Fitting and Interpreting Occupancy Models |
title_full | Fitting and Interpreting Occupancy Models |
title_fullStr | Fitting and Interpreting Occupancy Models |
title_full_unstemmed | Fitting and Interpreting Occupancy Models |
title_short | Fitting and Interpreting Occupancy Models |
title_sort | fitting and interpreting occupancy models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3542396/ https://www.ncbi.nlm.nih.gov/pubmed/23326323 http://dx.doi.org/10.1371/journal.pone.0052015 |
work_keys_str_mv | AT welshalanh fittingandinterpretingoccupancymodels AT lindenmayerdavidb fittingandinterpretingoccupancymodels AT donnellychristinef fittingandinterpretingoccupancymodels |