Cargando…
Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells
BACKGROUND: Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s ther...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543259/ https://www.ncbi.nlm.nih.gov/pubmed/22998550 http://dx.doi.org/10.1186/1471-2407-12-419 |
_version_ | 1782255627098128384 |
---|---|
author | Papa, Anne-Laure Basu, Sudipta Sengupta, Poulomi Banerjee, Deboshri Sengupta, Shiladitya Harfouche, Rania |
author_facet | Papa, Anne-Laure Basu, Sudipta Sengupta, Poulomi Banerjee, Deboshri Sengupta, Shiladitya Harfouche, Rania |
author_sort | Papa, Anne-Laure |
collection | PubMed |
description | BACKGROUND: Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. METHODS: Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. RESULTS: Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. CONCLUSIONS: Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings. |
format | Online Article Text |
id | pubmed-3543259 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35432592013-01-14 Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells Papa, Anne-Laure Basu, Sudipta Sengupta, Poulomi Banerjee, Deboshri Sengupta, Shiladitya Harfouche, Rania BMC Cancer Research Article BACKGROUND: Pancreatic cancer remains the deadliest of all cancers, with a mortality rate of 91%. Gemcitabine is considered the gold chemotherapeutic standard, but only marginally improves life-span due to its chemical instability and low cell penetrance. A new paradigm to improve Gemcitabine’s therapeutic index is to administer it in nanoparticles, which favour its delivery to cells when under 500 nm in diameter. Although promising, this approach still suffers from major limitations, as the choice of nanovector used as well as its effects on Gemcitabine intracellular trafficking inside pancreatic cancer cells remain unknown. A proper elucidation of these mechanisms would allow for the elaboration of better strategies to engineer more potent Gemcitabine nanotherapeutics against pancreatic cancer. METHODS: Gemcitabine was encapsulated in two types of commonly used nanovectors, namely poly(lactic-co-glycolic acid) (PLGA) and cholesterol-based liposomes, and their physico-chemical parameters assessed in vitro. Their mechanisms of action in human pancreatic cells were compared with those of the free drug, and with each others, using cytotoxity, apoptosis and ultrastructural analyses. RESULTS: Physico-chemical analyses of both drugs showed high loading efficiencies and sizes of less than 200 nm, as assessed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), with a drug release profile of at least one week. These profiles translated to significant cytotoxicity and apoptosis, as well as distinct intracellular trafficking mechanisms, which were most pronounced in the case of PLGem showing significant mitochondrial, cytosolic and endoplasmic reticulum stresses. CONCLUSIONS: Our study demonstrates how the choice of nanovector affects the mechanisms of drug action and is a crucial determinant of Gemcitabine intracellular trafficking and potency in pancreatic cancer settings. BioMed Central 2012-09-22 /pmc/articles/PMC3543259/ /pubmed/22998550 http://dx.doi.org/10.1186/1471-2407-12-419 Text en Copyright ©2012 Papa et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Papa, Anne-Laure Basu, Sudipta Sengupta, Poulomi Banerjee, Deboshri Sengupta, Shiladitya Harfouche, Rania Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title | Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title_full | Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title_fullStr | Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title_full_unstemmed | Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title_short | Mechanistic studies of Gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
title_sort | mechanistic studies of gemcitabine-loaded nanoplatforms in resistant pancreatic cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543259/ https://www.ncbi.nlm.nih.gov/pubmed/22998550 http://dx.doi.org/10.1186/1471-2407-12-419 |
work_keys_str_mv | AT papaannelaure mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells AT basusudipta mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells AT senguptapoulomi mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells AT banerjeedeboshri mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells AT senguptashiladitya mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells AT harfoucherania mechanisticstudiesofgemcitabineloadednanoplatformsinresistantpancreaticcancercells |