Cargando…

Transient and sustained cortical activity elicited by connected speech of varying intelligibility

BACKGROUND: The robustness of speech perception in the face of acoustic variation is founded on the ability of the auditory system to integrate the acoustic features of speech and to segregate them from background noise. This auditory scene analysis process is facilitated by top-down mechanisms, suc...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiitinen, Hannu, Miettinen, Ismo, Alku, Paavo, May, Patrick J C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543724/
https://www.ncbi.nlm.nih.gov/pubmed/23276297
http://dx.doi.org/10.1186/1471-2202-13-157
_version_ 1782255693809582080
author Tiitinen, Hannu
Miettinen, Ismo
Alku, Paavo
May, Patrick J C
author_facet Tiitinen, Hannu
Miettinen, Ismo
Alku, Paavo
May, Patrick J C
author_sort Tiitinen, Hannu
collection PubMed
description BACKGROUND: The robustness of speech perception in the face of acoustic variation is founded on the ability of the auditory system to integrate the acoustic features of speech and to segregate them from background noise. This auditory scene analysis process is facilitated by top-down mechanisms, such as recognition memory for speech content. However, the cortical processes underlying these facilitatory mechanisms remain unclear. The present magnetoencephalography (MEG) study examined how the activity of auditory cortical areas is modulated by acoustic degradation and intelligibility of connected speech. The experimental design allowed for the comparison of cortical activity patterns elicited by acoustically identical stimuli which were perceived as either intelligible or unintelligible. RESULTS: In the experiment, a set of sentences was presented to the subject in distorted, undistorted, and again in distorted form. The intervening exposure to undistorted versions of sentences rendered the initially unintelligible, distorted sentences intelligible, as evidenced by an increase from 30% to 80% in the proportion of sentences reported as intelligible. These perceptual changes were reflected in the activity of the auditory cortex, with the auditory N1m response (~100 ms) being more prominent for the distorted stimuli than for the intact ones. In the time range of auditory P2m response (>200 ms), auditory cortex as well as regions anterior and posterior to this area generated a stronger response to sentences which were intelligible than unintelligible. During the sustained field (>300 ms), stronger activity was elicited by degraded stimuli in auditory cortex and by intelligible sentences in areas posterior to auditory cortex. CONCLUSIONS: The current findings suggest that the auditory system comprises bottom-up and top-down processes which are reflected in transient and sustained brain activity. It appears that analysis of acoustic features occurs during the first 100 ms, and sensitivity to speech intelligibility emerges in auditory cortex and surrounding areas from 200 ms onwards. The two processes are intertwined, with the activity of auditory cortical areas being modulated by top-down processes related to memory traces of speech and supporting speech intelligibility.
format Online
Article
Text
id pubmed-3543724
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35437242013-01-14 Transient and sustained cortical activity elicited by connected speech of varying intelligibility Tiitinen, Hannu Miettinen, Ismo Alku, Paavo May, Patrick J C BMC Neurosci Research Article BACKGROUND: The robustness of speech perception in the face of acoustic variation is founded on the ability of the auditory system to integrate the acoustic features of speech and to segregate them from background noise. This auditory scene analysis process is facilitated by top-down mechanisms, such as recognition memory for speech content. However, the cortical processes underlying these facilitatory mechanisms remain unclear. The present magnetoencephalography (MEG) study examined how the activity of auditory cortical areas is modulated by acoustic degradation and intelligibility of connected speech. The experimental design allowed for the comparison of cortical activity patterns elicited by acoustically identical stimuli which were perceived as either intelligible or unintelligible. RESULTS: In the experiment, a set of sentences was presented to the subject in distorted, undistorted, and again in distorted form. The intervening exposure to undistorted versions of sentences rendered the initially unintelligible, distorted sentences intelligible, as evidenced by an increase from 30% to 80% in the proportion of sentences reported as intelligible. These perceptual changes were reflected in the activity of the auditory cortex, with the auditory N1m response (~100 ms) being more prominent for the distorted stimuli than for the intact ones. In the time range of auditory P2m response (>200 ms), auditory cortex as well as regions anterior and posterior to this area generated a stronger response to sentences which were intelligible than unintelligible. During the sustained field (>300 ms), stronger activity was elicited by degraded stimuli in auditory cortex and by intelligible sentences in areas posterior to auditory cortex. CONCLUSIONS: The current findings suggest that the auditory system comprises bottom-up and top-down processes which are reflected in transient and sustained brain activity. It appears that analysis of acoustic features occurs during the first 100 ms, and sensitivity to speech intelligibility emerges in auditory cortex and surrounding areas from 200 ms onwards. The two processes are intertwined, with the activity of auditory cortical areas being modulated by top-down processes related to memory traces of speech and supporting speech intelligibility. BioMed Central 2012-12-31 /pmc/articles/PMC3543724/ /pubmed/23276297 http://dx.doi.org/10.1186/1471-2202-13-157 Text en Copyright ©2012 Tiitinen et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tiitinen, Hannu
Miettinen, Ismo
Alku, Paavo
May, Patrick J C
Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title_full Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title_fullStr Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title_full_unstemmed Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title_short Transient and sustained cortical activity elicited by connected speech of varying intelligibility
title_sort transient and sustained cortical activity elicited by connected speech of varying intelligibility
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543724/
https://www.ncbi.nlm.nih.gov/pubmed/23276297
http://dx.doi.org/10.1186/1471-2202-13-157
work_keys_str_mv AT tiitinenhannu transientandsustainedcorticalactivityelicitedbyconnectedspeechofvaryingintelligibility
AT miettinenismo transientandsustainedcorticalactivityelicitedbyconnectedspeechofvaryingintelligibility
AT alkupaavo transientandsustainedcorticalactivityelicitedbyconnectedspeechofvaryingintelligibility
AT maypatrickjc transientandsustainedcorticalactivityelicitedbyconnectedspeechofvaryingintelligibility