Cargando…
Finding driver pathways in cancer: models and algorithms
BACKGROUND: Cancer sequencing projects are now measuring somatic mutations in large numbers of cancer genomes. A key challenge in interpreting these data is to distinguish driver mutations, mutations important for cancer development, from passenger mutations that have accumulated in somatic cells bu...
Autores principales: | Vandin, Fabio, Upfal, Eli, Raphael, Benjamin J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544164/ https://www.ncbi.nlm.nih.gov/pubmed/22954134 http://dx.doi.org/10.1186/1748-7188-7-23 |
Ejemplares similares
-
Accurate Computation of Survival Statistics in Genome-Wide Studies
por: Vandin, Fabio, et al.
Publicado: (2015) -
Differentially mutated subnetworks discovery
por: Hajkarim, Morteza Chalabi, et al.
Publicado: (2019) -
Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine
por: Raphael, Benjamin J, et al.
Publicado: (2014) -
Efficient algorithms to discover alterations with complementary functional association in cancer
por: Sarto Basso, Rebecca, et al.
Publicado: (2019) -
NoMAS: A Computational Approach to Find Mutated Subnetworks Associated With Survival in Genome-Wide Cancer Studies
por: Altieri, Federico, et al.
Publicado: (2019)