Cargando…

Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1

The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Nogueira, Leticia M, Lavigne, Jackie A, Chandramouli, Gadisetti V R, Lui, Huaitian, Barrett, J Carl, Hursting, Stephen D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544443/
https://www.ncbi.nlm.nih.gov/pubmed/23342276
http://dx.doi.org/10.1002/cam4.23
_version_ 1782255786109435904
author Nogueira, Leticia M
Lavigne, Jackie A
Chandramouli, Gadisetti V R
Lui, Huaitian
Barrett, J Carl
Hursting, Stephen D
author_facet Nogueira, Leticia M
Lavigne, Jackie A
Chandramouli, Gadisetti V R
Lui, Huaitian
Barrett, J Carl
Hursting, Stephen D
author_sort Nogueira, Leticia M
collection PubMed
description The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes. Exogenous IGF-1 rescued the hepatic expression of several metabolic genes and pathways affected by CR. Exogenous IGF-1 also rescued the expression of several metabolism- and cancer-related genes affected by CR in the mammary gland. Furthermore, exogenous IGF-1 partially reversed the mammary tumor inhibitory effects of 30% CR. We conclude that several genes and pathways, particularly those associated with macronutrient and steroid hormone metabolism, are associated with the anticancer effects of CR, and that reduced IGF-1 levels can account, at least in part, for many of the effects of CR on gene expression and mammary tumor burden.
format Online
Article
Text
id pubmed-3544443
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-35444432013-01-22 Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1 Nogueira, Leticia M Lavigne, Jackie A Chandramouli, Gadisetti V R Lui, Huaitian Barrett, J Carl Hursting, Stephen D Cancer Med Cancer Prevention The prevalence of obesity, an established risk and progression factor for breast and many other cancer types, remains very high in the United States and throughout the world. Calorie restriction (CR), a reduced-calorie dietary regimen typically involving a 20–40% reduction in calorie consumption, prevents or reverses obesity, and inhibits mammary and other types of cancer in multiple tumor model systems. Unfortunately, the mechanisms underlying the tumor inhibitory effects of CR are poorly understood, and a better understanding of these mechanisms may lead to new intervention targets and strategies for preventing or controlling cancer. We have previously shown that the anticancer effects of CR are associated with decreased systemic levels of insulin-like growth factor-1 (IGF-1), the primary source of which is liver. We have also reported that CR strongly suppresses tumor development and growth in multiple mammary cancer models. To identify CR-responsive genes and pathways, and to further characterize the role of IGF-1 as a mediator of the anticancer effects of CR, we assessed hepatic and mammary gland gene expression, hormone levels and growth of orthotopically transplanted mammary tumors in control and CR mice with and without exogenous IGF-1. C57BL/6 mice were fed either control AIN-76A diet ad libitum (AL), subjected to 20%, 30%, or 40% CR plus placebo timed-release pellets, or subjected to 30% or 40% CR plus timed-release pellets delivering murine IGF-1 (mIGF-1, 20 μg/day). Compared with AL-fed controls, body weights were decreased 14.3% in the 20% CR group, 18.5% in the 30% CR group, and 38% in the 40% CR group; IGF-1 infusion had no effect on body weight. Hepatic transcriptome analyses indicated that compared with 20% CR, 30% CR significantly modulated more than twice the number of genes and 40% CR more than seven times the number of genes. Many of the genes specific to the 40% CR regimen were hepatic stress-related and/or DNA damage-related genes. Exogenous IGF-1 rescued the hepatic expression of several metabolic genes and pathways affected by CR. Exogenous IGF-1 also rescued the expression of several metabolism- and cancer-related genes affected by CR in the mammary gland. Furthermore, exogenous IGF-1 partially reversed the mammary tumor inhibitory effects of 30% CR. We conclude that several genes and pathways, particularly those associated with macronutrient and steroid hormone metabolism, are associated with the anticancer effects of CR, and that reduced IGF-1 levels can account, at least in part, for many of the effects of CR on gene expression and mammary tumor burden. Blackwell Publishing Ltd 2012-10 2012-08-06 /pmc/articles/PMC3544443/ /pubmed/23342276 http://dx.doi.org/10.1002/cam4.23 Text en © 2012 The Authors. Published by Blackwell Publishing Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Cancer Prevention
Nogueira, Leticia M
Lavigne, Jackie A
Chandramouli, Gadisetti V R
Lui, Huaitian
Barrett, J Carl
Hursting, Stephen D
Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title_full Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title_fullStr Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title_full_unstemmed Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title_short Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
title_sort dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1
topic Cancer Prevention
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544443/
https://www.ncbi.nlm.nih.gov/pubmed/23342276
http://dx.doi.org/10.1002/cam4.23
work_keys_str_mv AT nogueiraleticiam dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1
AT lavignejackiea dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1
AT chandramouligadisettivr dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1
AT luihuaitian dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1
AT barrettjcarl dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1
AT hurstingstephend dosedependenteffectsofcalorierestrictionongeneexpressionmetabolismandtumorprogressionarepartiallymediatedbyinsulinlikegrowthfactor1