Cargando…
Teacher led school-based surveillance can allow accurate tracking of emerging infectious diseases - evidence from serial cross-sectional surveys of febrile respiratory illness during the H1N1 2009 influenza pandemic in Singapore
BACKGROUND: Schools are important foci of influenza transmission and potential targets for surveillance and interventions. We compared several school-based influenza monitoring systems with clinic-based influenza-like illness (ILI) surveillance, and assessed the variation in illness rates between an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3544582/ https://www.ncbi.nlm.nih.gov/pubmed/23206689 http://dx.doi.org/10.1186/1471-2334-12-336 |
Sumario: | BACKGROUND: Schools are important foci of influenza transmission and potential targets for surveillance and interventions. We compared several school-based influenza monitoring systems with clinic-based influenza-like illness (ILI) surveillance, and assessed the variation in illness rates between and within schools. METHODS: During the initial wave of pandemic H1N1 (pdmH1N1) infections from June to Sept 2009 in Singapore, we collected data on nation-wide laboratory confirmed cases (Sch-LCC) and daily temperature monitoring (Sch-DTM), and teacher-led febrile respiratory illness reporting in 6 sentinel schools (Sch-FRI). Comparisons were made against age-stratified clinic-based influenza-like illness (ILI) data from 23 primary care clinics (GP-ILI) and proportions of ILI testing positive for pdmH1N1 (Lab-ILI) by computing the fraction of cumulative incidence occurring by epidemiological week 30 (when GP-ILI incidence peaked); and cumulative incidence rates between school-based indicators and sero-epidemiological pdmH1N1 incidence (estimated from changes in prevalence of A/California/7/2009 H1N1 hemagglutination inhibition titers ≥ 40 between pre-epidemic and post-epidemic sera). Variation in Sch-FRI rates in the 6 schools was also investigated through a Bayesian hierarchical model. RESULTS: By week 30, for primary and secondary school children respectively, 63% and 79% of incidence for Sch-LCC had occurred, compared with 50% and 52% for GP-ILI data, and 48% and 53% for Sch-FRI. There were 1,187 notified cases and 7,588 episodes in the Sch-LCC and Sch-DTM systems; given school enrollment of 485,723 children, this represented 0.24 cases and 1.6 episodes per 100 children respectively. Mean Sch-FRI rate was 28.8 per 100 children (95% CI: 27.7 to 29.9) in the 6 schools. We estimate from serology that 41.8% (95% CI: 30.2% to 55.9%) of primary and 43.2% (95% CI: 28.2% to 60.8%) of secondary school-aged children were infected. Sch-FRI rates were similar across the 6 schools (23 to 34 episodes per 100 children), but there was widespread variation by classrooms; in the hierarchical model, omitting age and school effects was inconsequential but neglecting classroom level effects led to highly significant reductions in goodness of fit. CONCLUSIONS: Epidemic curves from Sch-FRI were comparable to GP-ILI data, and Sch-FRI detected substantially more infections than Sch-LCC and Sch-DTM. Variability in classroom attack rates suggests localized class-room transmission. |
---|