Cargando…

Electronic Tuning of Site-Selectivity

Site-selective functionalizations of complex small molecules can generate targeted derivatives with exceptional step-efficiency, but general strategies for maximizing selectivity in this context are rare. Here we report that site-selectivity can be tuned by simply modifying the electronic nature of...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilcock, Brandon C., Uno, Brice E., Bromann, Gretchen L., Clark, Matthew J., Anderson, Thomas M., Burke, Martin D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545056/
https://www.ncbi.nlm.nih.gov/pubmed/23174979
http://dx.doi.org/10.1038/nchem.1495
Descripción
Sumario:Site-selective functionalizations of complex small molecules can generate targeted derivatives with exceptional step-efficiency, but general strategies for maximizing selectivity in this context are rare. Here we report that site-selectivity can be tuned by simply modifying the electronic nature of the reagents. A Hammett analysis is consistent with linking of this phenomenon to the Hammond postulate: electronic tuning to a more product-like transition state amplifies site-discriminating interactions between a reagent and its substrate. This strategy transformed a minimally site-selective acylation reaction into a highly selective and thus preparatively useful one. Electronic tuning of both an acylpyridinium donor and its carboxylate counterion further promoted site-divergent functionalizations. With these advances, a range of modifications to just one of the many hydroxyl groups appended to the ion channel-forming natural product amphotericin B was achieved. Thus, electronic tuning of reagents represents an effective strategy for discovering and optimizing site-selective functionalization reactions.