Cargando…

Novel Inverse Binding Mode of Indirubin Derivatives Yields Improved Selectivity for DYRK Kinases

[Image: see text] DYRK kinases are involved in alternative pre-mRNA splicing as well as in neuropathological states such as Alzheimer's disease and Down syndrome. In this study, we present the design, synthesis, and biological evaluation of indirubins as DYRK inhibitors with enhanced selectivit...

Descripción completa

Detalles Bibliográficos
Autores principales: Myrianthopoulos, Vassilios, Kritsanida, Marina, Gaboriaud-Kolar, Nicolas, Magiatis, Prokopios, Ferandin, Yoan, Durieu, Emilie, Lozach, Olivier, Cappel, Daniel, Soundararajan, Meera, Filippakopoulos, Panagis, Sherman, Woody, Knapp, Stefan, Meijer, Laurent, Mikros, Emmanuel, Skaltsounis, Alexios-Leandros
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2012
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545483/
https://www.ncbi.nlm.nih.gov/pubmed/23336033
http://dx.doi.org/10.1021/ml300207a
Descripción
Sumario:[Image: see text] DYRK kinases are involved in alternative pre-mRNA splicing as well as in neuropathological states such as Alzheimer's disease and Down syndrome. In this study, we present the design, synthesis, and biological evaluation of indirubins as DYRK inhibitors with enhanced selectivity. Modifications of the bis-indole included polar or acidic functionalities at positions 5′ and 6′ and a bromine or a trifluoromethyl group at position 7, affording analogues that possess high activity and pronounced specificity. Compound 6i carrying a 5′-carboxylate moiety demonstrated the best inhibitory profile. A novel inverse binding mode, which forms the basis for the improved selectivity, was suggested by molecular modeling and confirmed by determining the crystal structure of DYRK2 in complex with 6i. Structure–activity relationships were further established, including a thermodynamic analysis of binding site water molecules, offering a structural explanation for the selective DYRK inhibition.