Cargando…

Python algorithms in particle tracking microrheology

BACKGROUND: Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing and tools allowing control of the calculation errors. RESULTS: We repor...

Descripción completa

Detalles Bibliográficos
Autores principales: Maier, Timo, Haraszti, Tamás
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545843/
https://www.ncbi.nlm.nih.gov/pubmed/23186362
http://dx.doi.org/10.1186/1752-153X-6-144
_version_ 1782255945080897536
author Maier, Timo
Haraszti, Tamás
author_facet Maier, Timo
Haraszti, Tamás
author_sort Maier, Timo
collection PubMed
description BACKGROUND: Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing and tools allowing control of the calculation errors. RESULTS: We report the development of a software package collecting functions and scripts written in Python for automated and manual data processing, to extract viscoelastic information about the sample using recorded particle trajectories. The resulting program package analyzes the fundamental diffusion characteristics of particle trajectories and calculates the frequency dependent complex shear modulus using methods published in the literature. In order to increase conversion accuracy, segmentwise, double step, range-adaptive fitting and dynamic sampling algorithms are introduced to interpolate the data in a splinelike manner. CONCLUSIONS: The presented set of algorithms allows for flexible data processing for particle tracking microrheology. The package presents improved algorithms for mean square displacement estimation, controlling effects of frame loss during recording, and a novel numerical conversion method using segmentwise interpolation, decreasing the conversion error from about 100% to the order of 1%.
format Online
Article
Text
id pubmed-3545843
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-35458432013-01-17 Python algorithms in particle tracking microrheology Maier, Timo Haraszti, Tamás Chem Cent J Software BACKGROUND: Particle tracking passive microrheology relates recorded trajectories of microbeads, embedded in soft samples, to the local mechanical properties of the sample. The method requires intensive numerical data processing and tools allowing control of the calculation errors. RESULTS: We report the development of a software package collecting functions and scripts written in Python for automated and manual data processing, to extract viscoelastic information about the sample using recorded particle trajectories. The resulting program package analyzes the fundamental diffusion characteristics of particle trajectories and calculates the frequency dependent complex shear modulus using methods published in the literature. In order to increase conversion accuracy, segmentwise, double step, range-adaptive fitting and dynamic sampling algorithms are introduced to interpolate the data in a splinelike manner. CONCLUSIONS: The presented set of algorithms allows for flexible data processing for particle tracking microrheology. The package presents improved algorithms for mean square displacement estimation, controlling effects of frame loss during recording, and a novel numerical conversion method using segmentwise interpolation, decreasing the conversion error from about 100% to the order of 1%. BioMed Central 2012-11-27 /pmc/articles/PMC3545843/ /pubmed/23186362 http://dx.doi.org/10.1186/1752-153X-6-144 Text en Copyright ©2012 Maier and Haraszti; licensee Chemistry Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License(http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Software
Maier, Timo
Haraszti, Tamás
Python algorithms in particle tracking microrheology
title Python algorithms in particle tracking microrheology
title_full Python algorithms in particle tracking microrheology
title_fullStr Python algorithms in particle tracking microrheology
title_full_unstemmed Python algorithms in particle tracking microrheology
title_short Python algorithms in particle tracking microrheology
title_sort python algorithms in particle tracking microrheology
topic Software
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545843/
https://www.ncbi.nlm.nih.gov/pubmed/23186362
http://dx.doi.org/10.1186/1752-153X-6-144
work_keys_str_mv AT maiertimo pythonalgorithmsinparticletrackingmicrorheology
AT harasztitamas pythonalgorithmsinparticletrackingmicrorheology