Cargando…
Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses
In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1,...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545958/ https://www.ncbi.nlm.nih.gov/pubmed/23335985 http://dx.doi.org/10.1371/journal.pone.0054002 |
_version_ | 1782255969069170688 |
---|---|
author | Luo, Xiaoli Wu, Jiahe Li, Yuanbao Nan, Zhirun Guo, Xing Wang, Yixue Zhang, Anhong Wang, Zhian Xia, Guixian Tian, Yingchuan |
author_facet | Luo, Xiaoli Wu, Jiahe Li, Yuanbao Nan, Zhirun Guo, Xing Wang, Yixue Zhang, Anhong Wang, Zhian Xia, Guixian Tian, Yingchuan |
author_sort | Luo, Xiaoli |
collection | PubMed |
description | In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss. |
format | Online Article Text |
id | pubmed-3545958 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35459582013-01-18 Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses Luo, Xiaoli Wu, Jiahe Li, Yuanbao Nan, Zhirun Guo, Xing Wang, Yixue Zhang, Anhong Wang, Zhian Xia, Guixian Tian, Yingchuan PLoS One Research Article In plants, CuZn superoxide dismutase (CuZnSOD, EC l.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and catalase (CAT, EC l.11.1.6) are important scavengers of reactive oxygen species (ROS) to protect the cell from damage. In the present study, we isolated three homologous genes (GhSOD1, GhAPX1, and GhCAT1) from Gossypium hirsutum. Overexpressing cassettes containing chimeric GhSOD1, GhAPX1, or GhCAT1 were introduced into cotton plants by Agrobacterium transformation, and overexpressed products of these genes were transported into the chloroplasts by transit peptide, as expected. The five types of transgenic cotton plants that overexpressed GhSOD1, GhAPX1, GhCAT1, GhSOD1 and GhAPX1 stack (SAT), and GhSOD1 and GhCAT1 stack (SCT) were developed. Analyses in the greenhouse showed that the transgenic plants had higher tolerance to methyl viologen (MV) and salinity than WT plants. Interestingly, SCT plants suffered no damage under stress conditions. Based on analyses of enzyme activities, electrolyte leakage, chlorophyll content, photochemical yield (Fv/Fm), and biomass accumulation under stresses, the SCT plants that simultaneously overexpressed GhSOD1 and GhCAT1 appeared to benefit from synergistic effects of two genes and exhibited the highest tolerance to MV and salt stress among the transgenic lines, while the SAT plants simultaneously overexpressing GhSOD1 and GhAPX1 did not. In addition, transgenic plants overexpressing antioxidant enzymes in their chloroplasts had higher tolerance to salt stress than those expressing the genes in their cytoplasms, although overall enzyme activities were almost the same. Therefore, the synergistic effects of GhSOD1 and GhCAT1 in chloroplasts provide a new strategy for enhancing stress tolerance to avoid yield loss. Public Library of Science 2013-01-15 /pmc/articles/PMC3545958/ /pubmed/23335985 http://dx.doi.org/10.1371/journal.pone.0054002 Text en © 2013 Luo et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Luo, Xiaoli Wu, Jiahe Li, Yuanbao Nan, Zhirun Guo, Xing Wang, Yixue Zhang, Anhong Wang, Zhian Xia, Guixian Tian, Yingchuan Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title | Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title_full | Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title_fullStr | Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title_full_unstemmed | Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title_short | Synergistic Effects of GhSOD1 and GhCAT1 Overexpression in Cotton Chloroplasts on Enhancing Tolerance to Methyl Viologen and Salt Stresses |
title_sort | synergistic effects of ghsod1 and ghcat1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545958/ https://www.ncbi.nlm.nih.gov/pubmed/23335985 http://dx.doi.org/10.1371/journal.pone.0054002 |
work_keys_str_mv | AT luoxiaoli synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT wujiahe synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT liyuanbao synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT nanzhirun synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT guoxing synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT wangyixue synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT zhanganhong synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT wangzhian synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT xiaguixian synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses AT tianyingchuan synergisticeffectsofghsod1andghcat1overexpressionincottonchloroplastsonenhancingtolerancetomethylviologenandsaltstresses |