Cargando…

Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates

Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is c...

Descripción completa

Detalles Bibliográficos
Autores principales: Langendorf, Christopher G., Tuck, Kellie L., Key, Trevor L. G., Fenalti, Gustavo, Pike, Robert N., Rosado, Carlos J., Wong, Anders S. M., Buckle, Ashley M., Law, Ruby H. P., Whisstock, James C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546353/
https://www.ncbi.nlm.nih.gov/pubmed/23126365
http://dx.doi.org/10.1042/BSR20120111
_version_ 1782256040397504512
author Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
author_facet Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
author_sort Langendorf, Christopher G.
collection PubMed
description Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain.
format Online
Article
Text
id pubmed-3546353
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-35463532013-01-22 Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates Langendorf, Christopher G. Tuck, Kellie L. Key, Trevor L. G. Fenalti, Gustavo Pike, Robert N. Rosado, Carlos J. Wong, Anders S. M. Buckle, Ashley M. Law, Ruby H. P. Whisstock, James C. Biosci Rep Original Paper Imbalances in GABA (γ-aminobutyric acid) homoeostasis underlie psychiatric and movement disorders. The ability of the 65 kDa isoform of GAD (glutamic acid decarboxylase), GAD65, to control synaptic GABA levels is influenced through its capacity to auto-inactivate. In contrast, the GAD67 isoform is constitutively active. Previous structural insights suggest that flexibility in the GAD65 catalytic loop drives enzyme inactivation. To test this idea, we constructed a panel of GAD65/67 chimaeras and compared the ability of these molecules to auto-inactivate. Together, our data reveal the important finding that the C-terminal domain of GAD plays a key role in controlling GAD65 auto-inactivation. In support of these findings, we determined the X-ray crystal structure of a GAD65/67 chimaera that reveals that the conformation of the catalytic loop is intimately linked to the C-terminal domain. Portland Press Ltd. 2013-01-11 /pmc/articles/PMC3546353/ /pubmed/23126365 http://dx.doi.org/10.1042/BSR20120111 Text en © 2013 The Author(s). http://creativecommons.org/licenses/by-nc/2.5/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial Licence (http://creativecommons.org/licenses/by-nc/2.5/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Langendorf, Christopher G.
Tuck, Kellie L.
Key, Trevor L. G.
Fenalti, Gustavo
Pike, Robert N.
Rosado, Carlos J.
Wong, Anders S. M.
Buckle, Ashley M.
Law, Ruby H. P.
Whisstock, James C.
Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_fullStr Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_full_unstemmed Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_short Structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
title_sort structural characterization of the mechanism through which human glutamic acid decarboxylase auto-activates
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546353/
https://www.ncbi.nlm.nih.gov/pubmed/23126365
http://dx.doi.org/10.1042/BSR20120111
work_keys_str_mv AT langendorfchristopherg structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT tuckkelliel structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT keytrevorlg structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT fenaltigustavo structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT pikerobertn structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT rosadocarlosj structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT wonganderssm structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT buckleashleym structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT lawrubyhp structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates
AT whisstockjamesc structuralcharacterizationofthemechanismthroughwhichhumanglutamicaciddecarboxylaseautoactivates