Cargando…
Molecular characterisation of cell line models for triple-negative breast cancers
BACKGROUND: Triple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all BC subtypes have largely employed established BC cell lines, which h...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546428/ https://www.ncbi.nlm.nih.gov/pubmed/23151021 http://dx.doi.org/10.1186/1471-2164-13-619 |
_version_ | 1782256053747974144 |
---|---|
author | Grigoriadis, Anita Mackay, Alan Noel, Elodie Wu, Pei Jun Natrajan, Rachel Frankum, Jessica Reis-Filho, Jorge S Tutt, Andrew |
author_facet | Grigoriadis, Anita Mackay, Alan Noel, Elodie Wu, Pei Jun Natrajan, Rachel Frankum, Jessica Reis-Filho, Jorge S Tutt, Andrew |
author_sort | Grigoriadis, Anita |
collection | PubMed |
description | BACKGROUND: Triple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all BC subtypes have largely employed established BC cell lines, which have proven to be effective tools for drug discovery. RESULTS: Given the lines of evidence suggesting that BC cell lines are effective tools for drug discovery, we assessed the similarities between triple-negative BCs and cell lines, to identify in vitro representatives, modelling the diversity within this BC subtype. 25 BC cell lines, enriched for those lacking ER, PR and HER2 expression, were subjected to transcriptomic, genomic and epigenomic profiling analyses and comparisons were made to existing knowledge of corresponding perturbations in triple-negative BCs. Transcriptional analysis segregated ER-negative BC cell lines into three groups, displaying distinctive abundances for genes involved in epithelial-mesenchymal transition, apocrine and high-grade carcinomas. DNA copy number aberrations of triple-negative BCs were well represented in cell lines and genes with coordinately altered gene expression showed similar patterns in tumours and cell lines. Methylation events in triple-negative BCs were mostly retained in epigenomes of cell lines. Combined methylation and gene expression analyses revealed a subset of genes characteristic of the Claudin-low BC subtype, exhibiting epigenetic-regulated gene expression in BC cell lines and tumours, suggesting that methylation patterns are likely to underpin subtype-specificity. CONCLUSION: Here, we provide a comprehensive analysis of triple-negative BC features on several molecular levels in BC cell lines, thereby creating an in-depth resource to access the suitability of individual lines as experimental models for studying BC tumour biology, biomarkers and possible therapeutic targets in the context of preclinical target validation. |
format | Online Article Text |
id | pubmed-3546428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-35464282013-01-17 Molecular characterisation of cell line models for triple-negative breast cancers Grigoriadis, Anita Mackay, Alan Noel, Elodie Wu, Pei Jun Natrajan, Rachel Frankum, Jessica Reis-Filho, Jorge S Tutt, Andrew BMC Genomics Research Article BACKGROUND: Triple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all BC subtypes have largely employed established BC cell lines, which have proven to be effective tools for drug discovery. RESULTS: Given the lines of evidence suggesting that BC cell lines are effective tools for drug discovery, we assessed the similarities between triple-negative BCs and cell lines, to identify in vitro representatives, modelling the diversity within this BC subtype. 25 BC cell lines, enriched for those lacking ER, PR and HER2 expression, were subjected to transcriptomic, genomic and epigenomic profiling analyses and comparisons were made to existing knowledge of corresponding perturbations in triple-negative BCs. Transcriptional analysis segregated ER-negative BC cell lines into three groups, displaying distinctive abundances for genes involved in epithelial-mesenchymal transition, apocrine and high-grade carcinomas. DNA copy number aberrations of triple-negative BCs were well represented in cell lines and genes with coordinately altered gene expression showed similar patterns in tumours and cell lines. Methylation events in triple-negative BCs were mostly retained in epigenomes of cell lines. Combined methylation and gene expression analyses revealed a subset of genes characteristic of the Claudin-low BC subtype, exhibiting epigenetic-regulated gene expression in BC cell lines and tumours, suggesting that methylation patterns are likely to underpin subtype-specificity. CONCLUSION: Here, we provide a comprehensive analysis of triple-negative BC features on several molecular levels in BC cell lines, thereby creating an in-depth resource to access the suitability of individual lines as experimental models for studying BC tumour biology, biomarkers and possible therapeutic targets in the context of preclinical target validation. BioMed Central 2012-11-14 /pmc/articles/PMC3546428/ /pubmed/23151021 http://dx.doi.org/10.1186/1471-2164-13-619 Text en Copyright ©2012 Grigoriadis et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Grigoriadis, Anita Mackay, Alan Noel, Elodie Wu, Pei Jun Natrajan, Rachel Frankum, Jessica Reis-Filho, Jorge S Tutt, Andrew Molecular characterisation of cell line models for triple-negative breast cancers |
title | Molecular characterisation of cell line models for triple-negative breast cancers |
title_full | Molecular characterisation of cell line models for triple-negative breast cancers |
title_fullStr | Molecular characterisation of cell line models for triple-negative breast cancers |
title_full_unstemmed | Molecular characterisation of cell line models for triple-negative breast cancers |
title_short | Molecular characterisation of cell line models for triple-negative breast cancers |
title_sort | molecular characterisation of cell line models for triple-negative breast cancers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546428/ https://www.ncbi.nlm.nih.gov/pubmed/23151021 http://dx.doi.org/10.1186/1471-2164-13-619 |
work_keys_str_mv | AT grigoriadisanita molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT mackayalan molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT noelelodie molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT wupeijun molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT natrajanrachel molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT frankumjessica molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT reisfilhojorges molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers AT tuttandrew molecularcharacterisationofcelllinemodelsfortriplenegativebreastcancers |