Cargando…
Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being f...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546463/ https://www.ncbi.nlm.nih.gov/pubmed/23346221 http://dx.doi.org/10.1155/2012/568950 |
_version_ | 1782256061716103168 |
---|---|
author | Ding, Min Wang, Haiyun Chen, Jiajia Shen, Bairong Xu, Zhonghua |
author_facet | Ding, Min Wang, Haiyun Chen, Jiajia Shen, Bairong Xu, Zhonghua |
author_sort | Ding, Min |
collection | PubMed |
description | Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes. |
format | Online Article Text |
id | pubmed-3546463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Hindawi Publishing Corporation |
record_format | MEDLINE/PubMed |
spelling | pubmed-35464632013-01-23 Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data Ding, Min Wang, Haiyun Chen, Jiajia Shen, Bairong Xu, Zhonghua Comput Math Methods Med Research Article Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes. Hindawi Publishing Corporation 2012 2012-12-31 /pmc/articles/PMC3546463/ /pubmed/23346221 http://dx.doi.org/10.1155/2012/568950 Text en Copyright © 2012 Min Ding et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ding, Min Wang, Haiyun Chen, Jiajia Shen, Bairong Xu, Zhonghua Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title | Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title_full | Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title_fullStr | Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title_full_unstemmed | Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title_short | Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data |
title_sort | identification and functional annotation of genome-wide er-regulated genes in breast cancer based on chip-seq data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546463/ https://www.ncbi.nlm.nih.gov/pubmed/23346221 http://dx.doi.org/10.1155/2012/568950 |
work_keys_str_mv | AT dingmin identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata AT wanghaiyun identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata AT chenjiajia identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata AT shenbairong identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata AT xuzhonghua identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata |