Cargando…

Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data

Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being f...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Min, Wang, Haiyun, Chen, Jiajia, Shen, Bairong, Xu, Zhonghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546463/
https://www.ncbi.nlm.nih.gov/pubmed/23346221
http://dx.doi.org/10.1155/2012/568950
_version_ 1782256061716103168
author Ding, Min
Wang, Haiyun
Chen, Jiajia
Shen, Bairong
Xu, Zhonghua
author_facet Ding, Min
Wang, Haiyun
Chen, Jiajia
Shen, Bairong
Xu, Zhonghua
author_sort Ding, Min
collection PubMed
description Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes.
format Online
Article
Text
id pubmed-3546463
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-35464632013-01-23 Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data Ding, Min Wang, Haiyun Chen, Jiajia Shen, Bairong Xu, Zhonghua Comput Math Methods Med Research Article Estrogen receptor (ER) is a crucial molecule symbol of breast cancer. Molecular interactions between ER complexes and DNA regulate the expression of genes responsible for cancer cell phenotypes. However, the positions and mechanisms of the ER binding with downstream gene targets are far from being fully understood. ChIP-Seq is an important assay for the genome-wide study of protein-DNA interactions. In this paper, we explored the genome-wide chromatin localization of ER-DNA binding regions by analyzing ChIP-Seq data from MCF-7 breast cancer cell line. By integrating three peak detection algorithms and two datasets, we localized 933 ER binding sites, 92% among which were located far away from promoters, suggesting long-range control by ER. Moreover, 489 genes in the vicinity of ER binding sites were identified as estrogen response elements by comparison with expression data. In addition, 836 single nucleotide polymorphisms (SNPs) in or near 157 ER-regulated genes were found in the vicinity of ER binding sites. Furthermore, we annotated the function of the nearest-neighbor genes of these binding sites using Gene Ontology (GO), KEGG, and GeneGo pathway databases. The results revealed novel ER-regulated genes pathways for further experimental validation. ER was found to affect every developed stage of breast cancer by regulating genes related to the development, progression, and metastasis. This study provides a deeper understanding of the regulatory mechanisms of ER and its associated genes. Hindawi Publishing Corporation 2012 2012-12-31 /pmc/articles/PMC3546463/ /pubmed/23346221 http://dx.doi.org/10.1155/2012/568950 Text en Copyright © 2012 Min Ding et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Ding, Min
Wang, Haiyun
Chen, Jiajia
Shen, Bairong
Xu, Zhonghua
Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title_full Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title_fullStr Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title_full_unstemmed Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title_short Identification and Functional Annotation of Genome-Wide ER-Regulated Genes in Breast Cancer Based on ChIP-Seq Data
title_sort identification and functional annotation of genome-wide er-regulated genes in breast cancer based on chip-seq data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546463/
https://www.ncbi.nlm.nih.gov/pubmed/23346221
http://dx.doi.org/10.1155/2012/568950
work_keys_str_mv AT dingmin identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata
AT wanghaiyun identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata
AT chenjiajia identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata
AT shenbairong identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata
AT xuzhonghua identificationandfunctionalannotationofgenomewideerregulatedgenesinbreastcancerbasedonchipseqdata