Cargando…

Activation Energy of Aggregation-Disaggregation Self-Oscillation of Polymer Chain

In this paper, we investigated the activation energies of the aggregation–disaggregation self-oscillation induced by the Belousov-Zhabotinsky (BZ) reaction by utilizing the nonthermoresponsive polymer chain in a wide temperature range. This is because the conventional type self-oscillating polymer c...

Descripción completa

Detalles Bibliográficos
Autores principales: Hara, Yusuke, Jahan, Rumana A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3546690/
https://www.ncbi.nlm.nih.gov/pubmed/23208370
http://dx.doi.org/10.3390/ijms131216281
Descripción
Sumario:In this paper, we investigated the activation energies of the aggregation–disaggregation self-oscillation induced by the Belousov-Zhabotinsky (BZ) reaction by utilizing the nonthermoresponsive polymer chain in a wide temperature range. This is because the conventional type self-oscillating polymer chain, with thermoresponsive poly(Nisopropylacrylamide) (poly(NIPAAm) main-chain covalently bonded to the ruthenium catalyst (Ru(bpy)(3)) of the BZ reaction, cannot evaluate the activation energy over the lower critical solution temperature (LCST). The nonthermoresponsive self-oscillating polymer chain is composed of a poly-vinylpyrrolidone (PVP) main-chain with the ruthenium catalyst (Ru(bpy)(3)). As a result, we clarified that the activation energy of the aggregation–disaggregation self-oscillation of the polymer chain is hardly affected by the concentrations of the BZ substrates. In addition, the activation energy of the nonthermoresponsive self-oscillating polymer chain was found to be almost the same value as normal BZ reaction, i.e., not including the self-oscillating polymer system with Ru moiety.