Cargando…
Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells
Vascular endothelial growth factor (VEGF) is an angiogenic mitogen involved in promoting tumor angiogenesis inside the body. VEGF is a key protein required for progression of tumor from benign to malignant phenotype. In this study, we investigated the binding affinity of a previously selected 26-mer...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547035/ https://www.ncbi.nlm.nih.gov/pubmed/23341879 http://dx.doi.org/10.1371/journal.pone.0050964 |
_version_ | 1782256162866987008 |
---|---|
author | Kaur, Harleen Li, Jasmine J. Bay, Boon-Huat Yung, Lin-Yue Lanry |
author_facet | Kaur, Harleen Li, Jasmine J. Bay, Boon-Huat Yung, Lin-Yue Lanry |
author_sort | Kaur, Harleen |
collection | PubMed |
description | Vascular endothelial growth factor (VEGF) is an angiogenic mitogen involved in promoting tumor angiogenesis inside the body. VEGF is a key protein required for progression of tumor from benign to malignant phenotype. In this study, we investigated the binding affinity of a previously selected 26-mer DNA aptamer sequence (SL(2)-B) against heparin binding domain (HBD) of VEGF(165) protein. The SL(2)-B was first chemically modified by introduction of phosphorothioate linkages (PS-linkages). Subsequently, surface plasmon resonance (SPR) spectroscopy and circular dichroism (CD) were used to determine the binding affinity, specificity and to deduce the conformation of PS-modified SL(2)-B sequence. Finally, antiproliferative activity of the modified SL(2)-B sequence on Hep G2 cancer cells was investigated. Our results demonstrate a marked enhancement in the biostability of the SL(2)-B sequence after PS modification. The modified SL(2)-B sequence also exhibits enhanced antiproliferative activity against Hep G2 cancer cells in hypoxia conditions. In addition, modified SL(2)-B sequence inhibits the expression of Jagged-1 protein, which is one of the ligands to VEGF linked delta/jagged-notch signaling pathway. |
format | Online Article Text |
id | pubmed-3547035 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-35470352013-01-22 Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells Kaur, Harleen Li, Jasmine J. Bay, Boon-Huat Yung, Lin-Yue Lanry PLoS One Research Article Vascular endothelial growth factor (VEGF) is an angiogenic mitogen involved in promoting tumor angiogenesis inside the body. VEGF is a key protein required for progression of tumor from benign to malignant phenotype. In this study, we investigated the binding affinity of a previously selected 26-mer DNA aptamer sequence (SL(2)-B) against heparin binding domain (HBD) of VEGF(165) protein. The SL(2)-B was first chemically modified by introduction of phosphorothioate linkages (PS-linkages). Subsequently, surface plasmon resonance (SPR) spectroscopy and circular dichroism (CD) were used to determine the binding affinity, specificity and to deduce the conformation of PS-modified SL(2)-B sequence. Finally, antiproliferative activity of the modified SL(2)-B sequence on Hep G2 cancer cells was investigated. Our results demonstrate a marked enhancement in the biostability of the SL(2)-B sequence after PS modification. The modified SL(2)-B sequence also exhibits enhanced antiproliferative activity against Hep G2 cancer cells in hypoxia conditions. In addition, modified SL(2)-B sequence inhibits the expression of Jagged-1 protein, which is one of the ligands to VEGF linked delta/jagged-notch signaling pathway. Public Library of Science 2013-01-16 /pmc/articles/PMC3547035/ /pubmed/23341879 http://dx.doi.org/10.1371/journal.pone.0050964 Text en © 2013 Kaur et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kaur, Harleen Li, Jasmine J. Bay, Boon-Huat Yung, Lin-Yue Lanry Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title | Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title_full | Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title_fullStr | Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title_full_unstemmed | Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title_short | Investigating the Antiproliferative Activity of High Affinity DNA Aptamer on Cancer Cells |
title_sort | investigating the antiproliferative activity of high affinity dna aptamer on cancer cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547035/ https://www.ncbi.nlm.nih.gov/pubmed/23341879 http://dx.doi.org/10.1371/journal.pone.0050964 |
work_keys_str_mv | AT kaurharleen investigatingtheantiproliferativeactivityofhighaffinitydnaaptameroncancercells AT lijasminej investigatingtheantiproliferativeactivityofhighaffinitydnaaptameroncancercells AT bayboonhuat investigatingtheantiproliferativeactivityofhighaffinitydnaaptameroncancercells AT yunglinyuelanry investigatingtheantiproliferativeactivityofhighaffinitydnaaptameroncancercells |